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Abstract

The efficacy of an optimization method often depends on the choos-
ing of a number of control parameters. Practitioners have traditionally
chosen these control parameters manually, often according to elaborate
guidelines or in a trial-and-error manner, which is laborious and suscep-
tible to human misconceptions of what causes an optimizer to perform
well. In recent years many variants to original optimization methods have
appeared, which seek to adapt the control parameters during optimiza-
tion, so as to remedy the need for a practitioner to determine good control
parameters for a problem at hand. Ironically however, these variants typ-
ically just introduce new and additional parameters that must be chosen
by the practitioner. Despite this obvious paradox these optimizer variants
are still considered state-of-the-art, because they do show performance im-
provement empirically. In this paper, such variants of the general purpose
optimization method known as Differential Evolution (DE) are studied
with the intent of determining if their schemes for adapting control pa-
rameters yield an actual performance advantage over the basic form of
DE which keeps the control parameters fixed during optimization. To
fairly compare the performance of these optimizer variants against each
other, their control parameters are all tuned by an automated approach.
This unveils their true performance capabilities, and the results show that
the DE variants generally have comparable performance, and hence that
adaptive parameter schemes do not appear to yield a general and consis-
tent performance improvement, as previously believed.

Keywords: Numerical optimization, direct-search, stochastic, multi-
agent, parameter tuning.

1 Introduction

The optimization method known as Differential Evolution (DE) was originally
introduced by Storn and Price [1], and offers a way of optimizing a given problem
without explicit knowledge of the gradient of that problem. This is particularly
useful if the gradient is difficult or even impossible to derive.

Usually this kind of optimization method has a number of control parame-
ters that allow for a practitioner to vary the optimizing behaviour and efficacy.
Tuning these control parameters to a problem at hand is typically done man-
ually by the practitioner in a trial-and-error fashion. Much research effort has
been put into finding guidelines for choosing proper DE control parameters for
different kinds of optimization problems, see for example the work by Storn et
al. [2] [3], Liu and Lampinen [4], or the attempt at mathematically deriving
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good DE parameters by Zaharie [5]. Other research has been devoted to elimi-
nating the need for parameter tuning altogether, by perturbing or adapting the
control parameters during optimization, which is frequently reported to yield
an improvement over using fixed control parameters, see for example the work
by Liu and Lampinen [6], Qin et al. [7] [8], and Brest et al. [9]. Ironically,
however, the DE variants with so-called adaptive control parameters, devised
to eliminate the need for parameter tuning, typically just introduce new and
additional parameters that must be tuned.

This paper takes another approach, acknowledging the fact that DE itself
is a complex adaptive system, and studies whether its control parameters can
be tuned, so as to make it perform on par with the adaptive variants that
are claimed to be superior. To unveil the core performance capabilities of all
these DE variants, their control parameters must be tuned properly so the
comparison is made fairly. Doing this without having to resort to manual
calibration of parameters, the issue of finding the best choice of control pa-
rameters is considered an optimization problem in its own right, and hence
solved by an overlaying optimization method. This is known in the literature as
Meta-Optimization, Meta-Evolution, Super-Optimization, Automated Parame-
ter Calibration, Hyper-Heuristics, etc. [10] [11] [12] [13] [14] [15] [16]. Our own
approach to meta-optimization from [17] is used in this study as well, because
it is both simple and efficient.

Using meta-optimization of DE control parameters, it is found that the ba-
sic DE with fixed parameters actually has performance comparable to the more
complex and so-called adaptive DE variants when their control parameters are
properly tuned. This comparability is in the sense that the basic DE some-
times performs better and sometimes worse than the variants with adaptive
parameters, but on a whole the performance tendencies are quite similar. The
study therefore disproves much of the “folklore” within this research field, both
with regard to the guidelines for properly choosing control parameters, but also
concerning the trend of developing ever more complex optimization methods.
These findings are expected to extend to other optimization methods as well.
For instance, it was already demonstrated in [17] that the optimization method
known as Particle Swarm Optimization (PSO) and due to Kennedy et al. [18]
[19], could actually be simplified without impairing its performance, if only its
control parameters were properly tuned. And as DE is conceptually similar to
the Genetic Algorithm (GA) by Holland [20], the same may hold for the GA as
well as other evolutionary optimization methods.

The paper is organized as follows. Section 2 describes DE along with some
adaptive variants that are considered state-of-the-art. Section 3 describes an
optimization method especially suited for meta-optimization, and section 4 de-
scribes how to employ it as an overlaid meta-optimizer. The benchmark prob-
lems used in this study are described in section 5, and the experimental settings
and results are given in section 6. Section 7 discusses these results and their
implications for the research field, and conclusive remarks are given in section 8.
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2 Differential Evolution

The population-based optimization method known as Differential Evolution
(DE) is due to Storn and Price [1]. DE does not explicitly rely on the gradient
of the problem it is optimizing, but works by having multiple agents collaborate
in a direct-search manner, treating the optimization problem as a black-box
which merely delivers a measure of fitness for candidate solutions. DE then
creates new candidate solutions by combining the solutions of randomly chosen
agents from its population, and accepting the new solutions in case of fitness
improvement.

2.1 Mutation And Crossover

DE employs evolutionary operators that are dubbed crossover and mutation in
its attempt to minimize some fitness function f : Rn → R. The operators are
typically applied in turn but have been combined for a more concise description
in the following. This study uses the DE/rand/1/bin variant, because it is
believed to be the best performing and hence the most popular of the basic DE
variants [3] [21].

Let ~y ∈ Rn be the new candidate solution for an agent whose currently best
known solution is ~x, and let ~a, ~b, and ~c be the solutions of distinct and randomly
chosen agents, which must also be distinct from the agent ~x that is currently
being updated. The elements of ~y = [y1, · · · , yn] are then computed as follows:

yi =
{
ai + F · (bi − ci) , ri < CR ∨ i = R
xi , else (1)

where F ∈ [0, 2] is a user-adjustable control parameter called the differential
weight, and the randomly chosen index R ∈ {1, · · · , n} ensures at least one
element differs from that of the original agent: yR 6= xR. While the rest of
the elements are either chosen from the original solution ~x or computed from
combining other agents’ solutions, according to the user-adjustable crossover
probability CR ∈ [0, 1], and with ri ∼ U(0, 1) being a uniform random number
drawn for each use. An additional user-adjustable control parameter of DE is
the population size NP , that is, the number of agents in the DE population.

Once the new potential solution ~y has been computed, it will replace the
agent’s original solution ~x in the case of improvement to the fitness. The DE
algorithm is shown in figure 1.

2.2 Perturbed Control Parameters

It has been recognized since the inception of DE that different choices of control
parameters cause it to perform worse or better on particular problems, and that
the selection of good parameters is a challenging art, see for example Storn et
al. [2] [3], Liu and Lampinen [4], and Zaharie [5].

An attempt to remedy the need for a user to determine the best DE control
parameters for a given optimization problem is to perturb the parameters during
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optimization. Several schemes for perturbing the differential weight F have been
proposed in the literature [3] [22], where the ones used by Storn himself are
generally the simple Dither and Jitter schemes [21] [23]. In the Dither scheme
a random differential weight F is picked on a per-agent basis:

F = Fl + r′ · (Fh − Fl) (2)

so r′ ∼ U(0, 1) is a random number picked once for each agent being updated
using Eq.(1). Another way of perturbing the differential weight is to use the
Jitter scheme, also from [3] [23]:

Fi = Fmid · (1 + δ · (r′i − 0.5))

where r′i ∼ U(0, 1) is now being picked for each element of the vector being
updated in Eq.(1). The parameter δ determines the scale of perturbation and
will be eliminated shortly. Although these formulae appear to be distinct at
first glance they are in fact equivalent, with the exception of Dither drawing
a random differential weight once for each agent-vector to be updated, and
Jitter drawing a random weight for each element of that vector. To see this let
Fl = Fmid · (1− δ/2) and Fu = Fmid · (1 + δ/2) in Eq.(2). A simpler and more
mathematical description of Dither would therefore be:

F ∼ U(Fl, Fu)

And for Jitter:

Fi ∼ U(Fmid · (1− δ/2), Fmid · (1 + δ/2))

Using a midpoint and a range instead of perturbation boundaries has the advan-
tage of being independent from each other, where as the Fl and Fh boundaries
must also satisfy Fl < Fu, which would make automatic tuning of these more
difficult later in this study. A common notation will therefore be used here for
both Dither and Jitter, having a midpoint Fmid and a range Frange. For Dither
this means the differential weight is picked randomly as:

F ∼ U(Fmid − Frange, Fmid + Frange)

And for Jitter this would be:

Fi ∼ U(Fmid − Frange, Fmid + Frange)

meaning that Fi should be drawn once for every vector-element i in Eq.(1),
as opposed to once for the entire vector in the Dither scheme. The midpoint
and range of perturbation are indeed just other control parameters, where the
midpoint can be anywhere between Fmid ∈ [0, 2], and the perturbation range
can be anywhere between Frange ∈ [0, 3], which were chosen to allow for unusual
values when Fmid and Frange will be automatically tuned later in this study.
Note that this also allows for negative differential weights to occur. For Dither
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this does not change much, because the negative weight is going to be multiplied
with the difference between two randomly picked agents in Eq.(1), and these
agents could just as well have been chosen in the reverse order, making the
negative differential weight equivalent to its positive counterpart. For Jitter
this is not the case however, because the computation of some vector-elements
in Eq.(1) might use a positive differential weight and others a negative. The
semantic meaning of this and how it relates to optimization performance is
impossible to foresee, but the experiments below have shown this is not an
issue.

The intention of perturbing the differential weight F was to remove the need
for a user to select a proper value for F . But it has actually introduced two
new control parameters which must be selected by the user, as hinted at above.
These new parameters determine the boundaries within which the perturbation
of F should occur. It seems to be the belief of researchers and practitioners,
that replacing fixed control parameters with stochastic ones makes it easier for
a user to tune the optimizer’s behaviour, because the choosing of boundaries for
the stochastic parameters affect optimization performance more leniently than
choosing the actual parameters. Perhaps the belief is that sooner or later a good
choice of control parameter will be chosen at random. But one has to remember
that completely random sampling of anything, whether it be control parameters
or solutions to the actual optimization problem at hand, statistically takes a
great many samples before finding a good choice. Therefore one might question
if perturbation of parameters such as done in the Dither and Jitter schemes has
a real chance of finding good choices of control parameters, or whether such
perturbation just slightly alters the underlying dynamic behaviour of the DE
agents, without having a generally adaptive effect on the control parameters
that would make DE perform well on mostly any given optimization problem.

2.3 Adaptive Control Parameters

Perturbing control parameters can be taken a step further by using the fitness
improvement to guide selection of control parameters. This is thought not only
to alleviate the need for a user to choose control parameters, matching them to
the problem at hand, but also to better adapt these parameters during optimiza-
tion, so as to better balance exploration versus exploitation of the search-space.

The Fuzzy Adaptive DE (FADE) by Liu and Lampinen [6] uses Fuzzy Logic
to adapt the DE control parameters during an optimization run. Fuzzy logic,
originally due to Zadeh [24], provides a means for logical reasoning with uncer-
tainties. In FADE the fuzzy reasoning is used to alter DE control parameters
according to observations of fitness improvements and population diversity, and
is reported to outperform DE with fixed and hand-tuned control parameters,
especially on a range of benchmark problems with higher dimensionalities.

Another example of an adaptive DE variant is the Self-adaptive DE (SaDE)
due to Qin and Suganthan [7]. The SaDE variant perturbs the F parameter
according to a normal distribution, and while the CR parameter is also randomly
picked, its observed effect on fitness improvement influences how and when
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this random picking occurs. Additionally SaDE uses several DE variants (e.g.
DE/rand/1/bin and DE/current-to-best/1/bin) which are switched between in
a stochastic manner, according to their observed ability to improve the fitness
during optimization. Note that this is significantly more complicated than the
original DE method, and will require a good deal more effort in implementation,
which must be made up for by improved performance.

In this study the adaptive DE variant known as JDE will be used, which is
due to Brest et al. [9]. This variant has been chosen here because its performance
has been found to compare well against other so-called state-of-the-art, adaptive
DE variants [9] [25]. It is presented by its authors as a Self-Adaptive DE as well,
because it eliminates the need for a user to select the F and CR parameters;
yet ironically introduces 8 new user-adjustable parameters to achieve this. But
this tendency is common for adaptive DE variants, and indeed also for the
comparatively simpler Dither and Jitter variants described above, which merely
perturb the control parameters. The JDE variant works as follows. First assign
start values to F and CR, call these Finit and CRinit, respectively. Then before
computing the new potential solution of a DE agent using Eq.(1), first decide
what parameters F and CR to use in that formula. With probability τF ∈ [0, 1]
draw a new random F ∼ U(Fl, Fl + Fu), otherwise reuse F from previously,
where each DE agent retains its own F parameter. Similarly each agent retains
its own CR parameter, for which a new random value CR ∼ U(CRl, CRl+CRu)
is picked with probability τCR ∈ [0, 1], and otherwise the old CR value for that
agent is reused. Whichever F and CR values are being used in the computation
of Eq.(1), they will survive to the next iteration, or be discarded along with the
agent’s new potential solution ~y, according to fitness improvement.

As noted previously, there are generally two reasons to introduce adaptive
parameters. First is the belief that it remedies the need for a user to manually
select parameters that yield good performance on a problem at hand. Second is
the belief that different choices of parameters are needed at different stages of
optimization so as to balance exploration and exploitation of the search-space.
Otherwise the parameters could just as well be held fixed during optimization.
Both these beliefs will be studied thoroughly in this paper, but it should be noted
at this point that the second reason to have parameter adaption is perhaps
a paradox. Biasing future control parameters towards values that have been
observed to work well until now seems to be contradictory to the need to have
different parameters at different stages of an optimization run. If anything, the
future control parameters should be chosen to be dissimilar to the parameters
that have previously worked well.

3 Local Unimodal Sampling

We introduced Local Unimodal Sampling (LUS) in [26], so named because it was
designed to deplete unimodal optima, although it has been found to work well for
harder optimization problems. The LUS method is used here as the overlaying
meta-optimizer for finding the control parameters of DE and its variants in an
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offline manner. LUS is often able to locate the optimum in comparatively few
iterations, which is required due to the computational time needed for each
iteration in meta-optimization.

For the sampling done by the LUS method, the new potential solution ~y ∈
Rn is chosen randomly from the neighbourhood of the current solution ~x by
adding a random vector ~a. When the LUS method is used for meta-optimization
these represent different choices of DE control parameters, meaning that ~x =
[NP, CR, F ] for DE/rand/1/bin with NP being the number of agents in the
DE population, and CR and F being the control parameters from Eq.(1). The
potential new choice of control parameters ~y is hence found from the current
choice ~x as follows:

~y = ~x+ ~a

where the vector ~a is picked randomly and uniformly from the hypercube bounded
by ±~d, that is:

~a ∼ U
(
−~d, ~d

)
with ~d being the current search-range, initially chosen as the full range of the
search-space and decreased during an optimization run as described next. The
search-space in meta-optimization constitutes the valid choices of control pa-
rameters, and will be detailed later.

When a sample fails to improve the fitness, the search-range ~d is decreased
for all dimensions simultaneously by multiplying with a factor q for each failure
to improve the fitness:

~d← q · ~d

with the decrease factor q being defined as:

q = n/β
√

1/2 = 2−β/n (3)

Here 0 < β < 1 causes slower decrease of the search-range, and β > 1 causes
more rapid decrease. Note that applying this n times yields a search-range
reduction of qn = 1/2β , and for β = 1 this would mean a halving of the search-
range for all dimensions. For the experiments in this paper, a value of β = 1/3
is used as it has been found to yield good results on a broad range of problems.
The algorithm for the LUS optimization method is shown in figure 2.

4 Meta-Optimization

There are a number of parameters controlling the behaviour and efficacy of DE.
These control parameters are usually found by manual experimentation, which is
time-consuming and susceptible to human misconceptions of the inner-working
of the optimization method. The problem of finding the best choice of control
parameters for a given optimization method, is considered here as an optimiza-
tion problem in its own right and is termed Meta-Optimization. In other words,
the idea is to have an optimization method act as an overlaying meta-optimizer,
trying to find the best performing control parameters for another optimization
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method, which in turn is used to optimize one or more actual problems. The
overall concept is depicted in figure 3.

It is important to understand the difference between adaptation and meta-
optimization (or tuning) of control parameters. Adaptation of control pa-
rameters occurs in an online manner during optimization, and hence requires
the adaptive mechanism to be embedded in the optimizer’s own algorithm.
This complicates the implementation and makes it difficult to use the adaptive
schemes for other optimization methods. Conversely, in meta-optimization the
control parameters are tuned in an offline manner between optimization runs,
and means the optimizer’s original algorithm can be reused without change,
apart from a new choice of control parameters. It also means that meta-
optimization can be readily used on many different optimization methods, with-
out the need for specializing their algorithms. Already, at the conceptual level,
meta-optimization presents clear advantages over parameter adaptation.

Meta-optimization is reported to have been used by Mercer and Sampson
[27] for finding optimal parameter settings of a Genetic Algorithm (GA). An-
other early example of meta-optimizing discrete parameters of a GA is due to
Grefenstette [10], and results with meta-optimizing GA parameters are also re-
ported by Keane [28]. Meta-optimizing both the control parameters and the
GA operators was studied by Bäck [11]. But meta-optimization is very time-
consuming, and it was not until recently that computers had enough processing
power to conduct more realistic experiments in meta-optimization; see for ex-
ample the recent experiments by Meissner et al. [13]. Limiting the time usage
was sought by Ridge and Kudenko [29] by first screening and ranking how the
indvidual control parameters affect performance and then focusing on the ones
of seemingly greatest impact, and they also allowed for meta-optimization with
regard to the conflicting measures of fitness results achieved and computational
time used [30] [31]. More statistically oriented approaches to meta-optimization
have also been pursued by François and Lavergne [32], Czarn et al. [33], and by
Nannen et al. [14] [34]. Birattari [12] used what is known as a racing approach,
in which several choices of control parameters are maintained in a pool that is
being depleted iteratively whenever statistical evidence suggests that a choice
of control parameters is inferior to the others in the pool. The approach to
meta-optimization used here and first introduced in [17], is preferred because
it works well for real-valued control parameters, is both simple and fast, and
yields good results.

4.1 Rating Optimizer Performance

The crux of automatically finding good control parameters for an optimization
method, is to define an appropriate performance measure that can be made
the subject of meta-optimization. The performance measure must reflect how
the optimization method is ultimately to be used, but at the same time allow
for efficient meta-optimization. A typical way of performing optimization with
DE is to let it run for some predetermined and seemingly adequate number of
iterations. This means the optimization performance of DE with a given choice
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of control parameters can be rated in terms of the fitness that can be obtained
within this number of iterations.

4.2 Tuning For Multiple Problems

Another important factor of using DE in practice is that its performance must
generalize well to other optimization problems. A way of achieving this would
be to tune the control parameters to perform well on multiple problems simul-
taneously. This means that meta-optimizing the DE parameters now becomes
a multi-objective optimization problem, which introduces new challenges.

The difficulty with optimizing multiple objectives simultaneously is that the
objectives may be conflicting or contradictory. So when the meta-optimizer
improves the DE performance on one problem, it may worsen its performance
on another. A number of optimization methods have been introduced to deal
with multi-objective optimization problems in general, see e.g. [35] [36] [37] [38].
But these techniques are not suited as the overlaid meta-optimizer because they
are more complicated than what is desired.

Instead, one of the simplest approaches to multi-objective optimization is
to combine the individual objectives into a single fitness measure by weighting
their sum. It is not clear who is the original author of this technique, but it is
mentioned in [39] as having been popular for many years. The weighted-sum
approach also works well for meta-optimization, as it is sought to improve the
overall performance. So instead of tuning the DE parameters to work well on
just a single problem, the performance evaluation now consists of using DE
with a given choice of control parameters on two or more actual problems, and
adding the results to create the overall performance measure used to guide the
meta-optimizer. This performance measure will also be referred to as the meta-
fitness. This performance measure also has the advantage of being supported
directly by the time-saving technique described next.

4.3 Preemptive Fitness Evaluation

Since DE is stochastic by nature, it will be likely that it gives a different result
for each optimization run, which may interfere with the meta-optimizer’s ability
to accurately determine good control parameters. A simple way of lessening
this stochastic noise is to perform a number of optimization runs in succession,
and use the average of the fitnesses obtained to guide the meta-optimization.
But repeating optimization runs also causes the computational time to grow
undesirably. For ordinary optimization of noisy fitness functions, it has been
proposed in the literature to schedule the number of repeats for when they are
necessary to distinguish fitness values, see for example [40] [41].

A simpler way of saving computational time when repeating fitness evalu-
ations in general, is to preemptively abort a fitness evaluation once the fitness
becomes worse than that needed for the optimizer to accept the new candidate
solution, and the fitness is known not to improve for the rest of the evaluation.
This technique is termed Preemptive Fitness Evaluation and has been used by
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researchers for decades, although its original author is difficult to establish as
the technique is seldom mentioned in the literature.

Greedy optimization methods are generally compatible with preemptive fit-
ness evaluation because they only move their optimizing agents in the case of
strict improvement to the fitness. Take for example the LUS method from
above, which works by choosing a random set of parameters in the vicinity of
the current parameters, and accepting them only in the case of improvement
to the meta-fitness. Therefore the meta-fitness evaluation of the new DE con-
trol parameters can be aborted as soon as it becomes known that it is actually
worse than that of the current parameters; and provided it will not improve
later during computation of the meta-fitness. This is generally ensured in meta-
optimization by only using problems that have non-negative fitnesses (or by
offsetting their fitnesses to become non-negative by adding an appropriate con-
stant value), so the best performance of DE when optimizing these problems is
also non-negative.

Preemptive fitness evaluation is generally applicable to fitness functions that
are iteratively computed, and where the overhead of monitoring the progress
and consequently aborting the fitness evaluation, does not cancel out the gain
in computational time that arises from only evaluating a part of the fitness
function. Since each meta-fitness evaluation is computationally expensive, time-
savings can be expected there. Indeed, depending on the experimental settings,
the time-saving resulting from the use of preemptive fitness evaluation in meta-
optimization ranges from approximately 50% to 85%.

4.4 Meta-Optimization Algorithm

The overall algorithm for performing meta-optimization is shown in figure 4,
and the algorithm for computing the meta-fitness measure is shown in figure 5.
The preemptive fitness limit is denoted L and is the limit beyond which the
meta-fitness evaluation can be aborted. This limit is passed as an argument by
the overlaying LUS meta-optimizer, so that L is the meta-fitness of the currently
best known choice of DE control parameters. Note that the performance on the
optimization problems are weighted equally important in this algorithm. This
will be discussed later.

5 Benchmark Problems

To test the optimization performance of DE variants using different choices of
control parameters, a suite of twelve benchmark problems is used. It is neces-
sary to use benchmark problems in this study because some of the brute-force
experiments in parameter tuning, which compute the optimization performance
of DE using all possible combinations for its control parameters (broken into
discrete intervals), require a very large number of fitness evaluations, and the
computational cost of using real-world problems would have been prohibitive.
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The benchmark problems are widely used in the literature and taken from
a larger suite collected by Yao et al. [42]. The reason these particular problems
have been chosen is that they generalize to higher dimensionalities, and they
all have non-negative fitness values (their global optimum have fitness zero).
Recall that the latter is required to use preemptive fitness evaluation in the
meta-optimization algorithm. The benchmark problems vary from uni-modal
(one local optimum which is hence also the global optimum, e.g. the Sphere
problem), to multi-modal (several local optima where the optimizer may get
stuck, e.g. the Ackley problem), and from separable (the dimensions of the
search-space are independent of each other in their influence on the fitness, e.g.
the Sphere problem), to non-separable (the dimensions of the search-space may
be intricately dependent on each other in their influence on the overall fitness,
e.g. the Rosenbrock problem). The benchmark problems are shown in table 1
and their initialization and search-space boundaries are shown in table 2. The
asymmetrical initialization ranges are chosen to further increase the difficulty
of optimizing these benchmark problems.

6 Experimental Results

This section presents several studies to uncover whether there is an advantage
to using control parameter adaptation in different situations. But first the
experimental settings are described.

6.1 Optimization Settings

To lessen the effect of stochastic variation a number of optimization runs must
be performed and their results averaged, so as to give a more truthful measure of
the performance that can be expected from a single optimization run. Here 50
optimization runs of each benchmark problem are used, which have been found
to be sufficient. For each of these optimization runs a number of iterations
are executed, equal to 200 times the dimensionality of the benchmark problem
in question. In these experiments all benchmark problems will have n = 30
dimensions, meaning that each optimization run will consist of 200 · n = 200 ·
30 = 6000 fitness evaluations. This is significantly less iterations than most
researchers report results for in the literature (see e.g. [3] [6] [9] [25] which
use up to 2000000 fitness evaluations per run), and although there are real-
world optimization problems for which long optimization runs can be used (see
[3] for some examples), there are also many real-world problems which require
substantial computational time for each fitness evaluation, making such long
optimization runs impossible. For example in Computational Fluid Dynamics
(CFD) where a physical shape such as an aircraft wing or a ship-hull must be
optimized, see e.g. Eres et al. [43]. Indeed, in some of our previous work only
20 ·n fitness evaluations could be used, due to the computational time required
for the problem considered [17]. Although this study uses cheaply computed
benchmark problems, it also contains some experiments in brute-force tuning
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of DE control parameters, in which the DE performance for an entire grid of
parameter combinations are computed, so that using very long DE runs would
have caused those experiments to take about a year of computation time instead
of a day. The choice of 200·n fitness evaluations per optimization run is therefore
considered a good compromise, also giving a better chance of the results being
applicable to a broader range of real-world problems. Should a practitioner
need to use longer optimization runs, then the meta-optimization experiments
can be repeated using those settings. It is expected that the findings concerning
parameter tuning versus adaptation still hold true for very long optimization
runs, although the actual DE parameters most suitable for such long runs, are
likely to be somewhat different from the ones found under the experimental
settings used here.

6.2 Statistical Significance

Since the benchmark experiments are stochastic their results ought to be com-
pared in terms of statistical significance. The test used here is known as the one-
tailed t-test for two independent samples, with a rejection threshold of p > 0.05,
see for example Crow et al. [44]. Using this test, the DE variant with the best
average result for a given benchmark problem is compared to the results of the
other DE variants, and the best results are marked as statistically significant
only if all the t-tests agree with this.

6.3 Meta-Optimization Settings

The experimental settings used for meta-optimization with regard to benchmark
problems are as follows. Six meta-optimization runs are conducted with the LUS
method as the overlaying meta-optimizer, trying to find the best performing
DE control parameters. Each meta-optimization run has a number of iterations
which equals 20 times the number of control parameters to be meta-optimized.
So for DE/rand/1/bin which has three control parameters, 60 iterations will be
performed for each meta-optimization run of the overlaying LUS method. For
the JDE variant which has 9 control parameters, 180 iterations will be performed
in each run of the overlaid meta-optimizer. In each of these iterations, the DE
variant is in turn made to perform optimization runs on benchmark problems,
to assess its performance with a given choice of control parameters, using the
general optimization settings described in section 6.1 above. The performance
on different benchmark problems are weighted equally, and since these problems
have widely varying fitness ranges, it might have been desirable to weigh their
influence on the tuning process differently. This has not been found to be a
crucial issue, however, and further investigation into this is left as a topic for
future research. These meta-optimization settings were found to be adequate in
discovering control parameters that cause DE to perform well. The boundaries
for the parameter search-spaces in all the meta-optimization experiments are
shown in table 3. Note that we allow for smaller population sizes NP than
usual [2] [3] [4], in part because these have been found to be adequate, but also

12



because the smaller a parameter search-space is, the faster the discovery of good
parameter choices using meta-optimization.

For the JDE boundaries it should be noted, that if a given combination of
parameters has CRl + CRu > 1 then CRu is adjusted prior to evaluating the
performance of JDE with these parameters, so as to ensure the sum is no more
than one: CRu ← 1 − CRl, because the crossover probability CR must be
between zero and one, and is picked as: CR ∼ U(CRl, CRl + CRu).

6.4 Hand-Tuned Parameters

The purpose of this first study is to establish how the DE variants with default
choices of parameters fare against each other. The control parameters in table 4
are standard in the literature [1] [2] [22] [9], and are presumably hand-tuned.
Table 5 show the results of optimizing the benchmark problems using these
parameters. It can be seen that JDE/rand/1/bin performs best when using these
default hand-tuned parameters. The worst performing DE variants appear to
be the ones using Dither and Jitter to perturb the F parameter. Recall however,
that these benchmark problems have optimal fitness values of zero, and none
of the results using hand-tuned parameters approach this, when given more
realistic optimization run-lengths of 6000 fitness evaluations.

One of the original authors of DE has suggested using DE/rand/1/bin with
F = 0.85, and Fmid = 0.85 for the Jitter variant [21], but this yielded slightly
worse performance on these problems and optimization run-lengths.

6.5 Average Performance Capability

The purpose of the study in this section is to unveil the core performance capa-
bilities of the DE variants, when their control parameters have all been properly
tuned. The cost of doing such tuning will be ignored for now. In the experiments
in this section, the DE parameters are tuned to perform well on all twelve bench-
mark problems on average, and the parameters can be seen in table 6. These
meta-optimized parameters are interesting compared to the hand-tuned param-
eters from table 4. First is the favouring of small population sizes NP , which
are actually only a fractional part of the dimensionality of the search-space,
and is therefore in stark contrast to the literature which generally recommends
10 · n for n-dimensional search-spaces, see e.g. [1] [2] [4] [22], although small
populations have been reported to work well on certain problems [3]. The fact
that smaller populations are preferred may at first sight not appear so strange,
however, because only a modest number of optimization iterations are allowed,
meaning that smaller populations will cause each agent to receive more itera-
tions to refine its candidate solution. But later experiments show that in some
cases large populations are favoured for similar optimization run-lengths, so it
seems virtually impossible to make such general predictions. The second notable
difference between hand-tuned and meta-optimized parameters is the crossover
probability CR which is now held very low, while the hand-tuned parameters
used high CR values. Third is the differential weight F , which is perturbed
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much more for the Dither and Jitter variants, where the latter has a notably
large perturbation range, Frange, which is otherwise recommended to be very
low [22] [23]. The JDE parameters are generally difficult to interpret, in part
because there are so many of them, but also because they seem even more in-
tricately dependent on each other. It can however be noted that the crossover
probability CR appears to be higher valued than for the other DE variants,
and the differential weight F appears to be less perturbed than for the Dither
and Jitter variants, albeit with roughly the same midpoint as the Jitter variant:
Fmid = (Fl + Fu)/2 ' 0.52.

The results of using the DE variants with the meta-optimized parameters
from table 6 are shown in table 7. The first thing to note, is how these relate
to the results obtained using DE variants with hand-tuned parameters, as pre-
viously shown in table 5. As can be seen the performance of all DE variants
improves greatly when their parameters are properly tuned. While there is no
guarantee that these meta-optimized parameters are the very best that exist,
they do incur great enough performance improvement to establish confidence in
our meta-optimization technique being able to find at least near-optimal choices
of control parameters.

Concerning the performance of DE when using fixed versus adaptive control
parameters, the experimental results show that there appears to be an advantage
of the Dither variant on four of the twelve benchmark problems, but this should
only be taken as a rough indication as the statistical tests make assumptions on
the distribution of results which may or may not hold. Also of interest is that
the JDE variant sometimes achieves worse results than even the basic DE with
its parameters held fixed during optimization. The reason JDE is claimed to
have superiority over other DE variants [9] [25], seems therefore to lie in the very
long optimization runs that are allowed in those studies. But as can be seen
here, JDE appears to perform worse when allowed a more realistic number of
iterations per optimization run. The conclusion of this study must be, that no
DE variant appears to hold a general and consistent advantage over the others
when their parameters are tuned for all the benchmark problems.

6.6 Specialization Ability

The purpose of the study in this section is to determine to what extent the
DE variants can be tuned to perform well on a single problem at a time. In
practice one would only do this if encountering premature convergence, because
the additional optimization iterations used in tuning could otherwise just have
been used to extend the ordinary optimization run. Furthermore, this study
will tell us something about the versatility of the DE variants in terms of how
much they can be specialized to a particular kind of optimization problem.

In the experiments above, the four DE variants were tuned for all benchmark
problems simultaneously, and all DE variants alike were then found to have trou-
ble optimizing particularly the Schwefel1-2 problem, but also the Rosenbrock
problem. Tuning the parameters of the DE variants to just the Schwefel1-2
problem yields the parameters in table 8. It is interesting that the population
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size NP has grown considerably for all these DE variants, when they must
perform well on the Schwefel1-2 problem. Yet they are still not allowed more
fitness evaluations during optimization, meaning that each agent now receives
fewer optimization iterations with these larger populations. Another interesting
thing to note is the crossover probability CR which for the Dither, Jitter, and
JDE variants are kept close to their upper boundary of 1, where as the param-
eters tuned for all benchmark problems had CR values closer to their opposite
boundary of 0, espcially for the Dither and Jitter variants. The differential
weight F is perturbed heavily in the Dither variant (which is perturbation on
a per-vector basis), while the Jitter variant (which is perturbation on a per-
vector-element basis) uses only light perturbation, apparently corresponding to
the advise given in the literature [3] [22] [23]. Tuning the parameters for the
Rosenbrock problem yields the parameters in table 9. Here the population sizes
are again very low, similar to the experiments in section 6.5, where the pa-
rameters were tuned to perform well on all benchmark problems on average.
The remaining parameters for the Dither and Jitter variants also show similar
tendencies to those in section 6.5, although with even heavier Jitter perturba-
tion which is again contrary to the rule-of-thumb advise given in [3] [23]. The
crossover probability for DE/rand/1/bin is also notably higher than it was when
tuned for all benchmark problems simultaneously. The parameters for JDE are,
as usual, difficult to interpret because their intrinsic meaning eludes human
analysis. It can however be noted that they appear to compare roughly to the
parameters of the simpler DE variants, namely in terms of a similar population
size, and a similar crossover probability (ignoring the initial value CRinit which
will probably not be held for long, due to the high probability τCR of perturb-
ing it). The perturbed differential weight for JDE however, is centred around
Fmid = (Fl + Fu)/2 ' 0.87, which is somewhat higher than for the other DE
variants.

Using these parameters on the Schwefel1-2 and Rosenbrock problems, respec-
tively, gives the results in table 10. Comparing these to the results in table 7 for
parameters tuned on all benchmark problems, shows consistent improvement
on the Schwefel1-2 problem. The Rosenbrock results are not so clear however.
For instance, the basic DE/rand/1/bin and the Dither variant actually perform
worse when compared to their results in table 7, where their control parameters
were tuned for all benchmark problems. The reason for this might be found
in the comparatively high standard deviations, which indicate significant per-
formance volatility on that problem. The same volatility exists for the other
DE variants as well, although they seem more capable of improving their per-
formance when their parameters have been specifically tuned for this problem.
In summary, the JDE variant performs best by far on the Schwefel1-2 problem,
while the Dither and Jitter variants seem to perform best on the Rosenbrock
problem, although the results are probably not statistically significant. Com-
paring the specialization ability of the Dither, Jitter, and JDE variants over
using DE with fixed parameters, the DE variants with perturbed and adaptive
parameters do appear to hold a slight advantage, especially on the Schwefel1-2
problem. This is perhaps ironic because these DE variants were designed specif-
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ically to alleviate the need for tuning their parameters to specific problems in
order for them to perform well. Whether these results hold true for a wider set
of optimization problems, however, remains an open question.

6.7 Generalization Ability

This section studies the generalization ability of the four DE variants. That is,
the ability to perform well on optimization problems for which the DE parame-
ters were not specifically tuned. This is how most practitioners would perhaps
prefer to use an optimizer – they would not have to retune the parameters for
every optimization problem they encounter. It is therefore important to deter-
mine which DE variant is able to generalize best, especially because three of
the variants were designed to generalize better by adjusting their parameters
during optimization.

To test for generalization ability the DE parameters are tuned for just three
out of the twelve benchmark problems, and their performance on all problems
is then assessed, which is a simple form of cross-validation [45]. The problems
used in the parameter tuning are: The Sphere problem because it is very simple
and an optimizer ought to at least perform well on this problem, the Rastrigin
problem because it is complex and the DE variants had varying success in opti-
mizing it in the experiments above, and the Rosenbrock problem because it has
proven to be one of the hardest to optimize. The parameters tuned to perform
well on these three benchmark problems are found in table 11. Comparing these
parameters to the ones in table 6 which were tuned for all twelve benchmark
problems, reveals some interesting similarities. First that the population size
NP is kept at 7 or 8, which is actually a little lower than they were in table 6,
but with the same trend of having small populations. Second is the relation-
ship between the crossover probability CR and differential weight F (also Fmid
and Frange), while not identical to the relationships in table 6 they do show
similar tendencies, namely that CR is low and F is high. The JDE parameters
have seemingly less perturbation of CR and more of F , but also with somewhat
similar tendencies to the parameters in table 6 where they were tuned for all
benchmark problems and not just the three problems used here. These findings
would suggest that the Sphere, Rastrigin, and Rosenbrock problems are possibly
representative of the benchmark suite in terms of DE generalization ability, and
hence that the DE parameters tuned for just these three problems might indeed
work well on the other benchmark problems.

The results on all benchmark problems, using the DE variants with their pa-
rameters tuned for just three of the benchmark problems, are shown in table 12.
While the Dither variant appears to hold a statistically significant advantage on
three out of the twelve problems, it actually appears to perform worse on some
of the other problems, notably Schwefel1-2 and Schwefel2-21. From this there
does not appear to be any consistency in which one DE variant can be said to be
superior over the others, and all the DE variants therefore appear to generalize
roughly equally well, albeit slightly differently. This is a remarkable finding be-
cause the Dither, Jitter, and JDE variants were specifically designed to alleviate
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the need for parameter tuning by perturbing or adapting their parameters, and
thus believed to generalize well to problems for which their parameters were
not specifically tuned. But the results here strongly suggest that DE variants
with perturbed or adaptive parameters do not yield any such generalization
advantage over using fixed parameters.

6.8 Rate of Convergence

The purpose of the study in this section is to assess whether some DE variants
have an advantage in terms of the speed with which they approach the optimum.
This is also known as their rate of convergence, and is important for optimiza-
tion problems where sub-optimal solutions may be used before optimization has
completely finished.

The parameters from table 11, which were tuned for just three benchmark
problems, will be used here to show the rate of convergence for one problem the
parameters were tuned for, and one problem for which the parameters were not
tuned. The problems chosen are the Sphere and Griewank problems, because the
four DE variants achieve roughly equivalent final results on those two problems
as can be seen from table 12.

Figures 6 and 7 show the average fitness traces. Note that these are new
experiments and the results might differ slightly from those in table 12. For the
Sphere problem the DE variants have comparable rates of convergence, with
exception of the Jitter variant which starts to perform worse than the others
roughly in the middle of the optimization run, but slightly outperforms the other
DE variants towards the end of the run. Other tests with the DE Jitter vari-
ant have been executed, and the erratic element midways through optimization
persists in some form, but the end results vary somewhat in that it sometimes
achieves better and sometimes worse end results than the other DE variants.
The rate of convergence on the Griewank problem is perhaps even more inter-
esting. Not only do the four DE variants have comparable performance, but the
convergence rate is curiously curved yet the DE variants have similar curvatures.
This suggests the underlying dynamic behaviour of these four DE variants might
be quite similar on the Griewank problem. Although these were just two out
of twelve benchmark problems, and one should be vary of concluding too much
from only two examples, it does appear that perturbing and adaptation of DE
parameters as done by the Dither, Jitter, and JDE variants, does not yield any
general improvement in terms of the rate with which an optimum is approached.

6.9 Ease of Tuning

The purpose of the study in this section is to show which DE variant is the easiest
to tune and how long it actually takes. Figure 8 shows the meta-optimization
progress for all four DE variants, taken from the experiments in section 6.5.
The meta-fitness measure is the internal measure used for guiding the meta-
optimization progress as described in section 4. To normalize these measures,
one would have to divide them by the number of repeated optimization runs,
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as well as by the total number of benchmark problems used in each meta-
fitness evaluation. In other words, one would have to divide these measures by
50 · 12 = 600 to obtain normalized measures that would correspond to the sum
of the average fitness values in table 7. But such normalization is not required
for just comparing the progress traces with each other.

Roughly after iteration 18 in figure 8 the JDE variant appears to be the
hardest to tune, and it takes an additional 35 iterations to find parameters for
the JDE variant that perform on par with the other DE variants. Note that
the meta-fitness axis is logscaled, so what appears at first glance to be a minor
difference in performance is in fact an exponential difference in performance. It
appears from this chart that the basic DE/rand/1/bin and its Dither variant
have the most stable and smooth performance improvements throughout their
tuning, while the Jitter variant is perhaps a little easier to tune after iteration
17-18. These results are probably as expected, where the JDE is generally a little
harder to meta-optimize because it has many more parameters that need tuning.
That the extra parameters of the JDE do not incur an even greater penalty
in tuning them, perhaps only speaks to the credit of the meta-optimization
technique employed.

Table 13 shows the actual time usage for meta-optimizing the parameters of
these four DE variants. The table shows the time usage for the experiments in
section 6.5 which used all twelve benchmark problems, and for the experiments
in section 6.7 which used only three benchmark problems. The experiments
were conducted on an Intel Pentium M 1.5 GHz laptop computer using an im-
plementation in the ANSI C programming language. The basic DE/rand/1/bin
takes around 18 minutes to tune for the twelve benchmark problems, while it is
estimated through extrapolation to take 54 minutes without the use of preemp-
tive fitness evaluation, which means a saving of 2/3 of the computational time.
The JDE variant takes almost twice the amount of time to meta-optimize, or ap-
proximately 35 minutes. This is also interesting because JDE actually has three
times the number of parameters that need be tuned and the meta-optimizer
hence performs three times the number of iterations (note how the JDE trace in
figure 8 continues long after the others). But again, due to the use of preemptive
fitness evaluation, the time usage is not tripled as one would have expected, but
merely doubled. This again speaks to the credit of the meta-optimization tech-
nique employed. Table 13 also shows the time usage for tuning the parameter
to perform well on just three benchmark problems instead of all twelve. While
the same relational tendencies amongst the DE variants prevail, it is interesting
to see that tuning the basic DE/rand/1/bin takes roughly 4 minutes. In con-
clusion, one can clearly see from table 13, that the basic DE/rand/1/bin is the
fastest of these DE variants to be tuned, in terms of wall-clock time usage. We
also feel certain that no researcher has ever spent so little time tuning param-
eters by hand, nor achieved optimization results from their tuning on par with
those achieved here.
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6.10 Parameter Study

The study in this section shows how different parameter combinations relate to
an optimizer’s performance. The parameter-space is traversed at even intervals
to create a mesh, and the performance of the optimizer is computed at each
mesh-point according to the definition of meta-fitness in figure 5 and the settings
from section 6.3.

However, as the number of parameters goes up, the number of mesh points
will have to be increased exponentially to allow an equally fine coverage of the
parameter-space. This is in essence the Curse of Dimensionality, only for the
parameter-space, a name coined by Bellman [46, preface p. ix]. The depiction of
the mesh is also increasingly difficult when the optimizer has more than 2 control
parameters. For both these reasons, the DE/rand/1/bin variant is being used
in this study as it has the fewest parameters, namely only 3 control parameters.
A total of 10648 parameter combinations were computed, distributed evenly
over the parameter-space, meaning that each parameter is allowed to take on
22 different values, which is considered a sufficiently fine mesh.

Figure 9 shows how the performance of DE/rand/1/bin relates to the choice
of population size NP , when also varying the other parameters. As can be
seen, the performance peaks at NP ' 10 and worsens with increased population
size. This finding is similar to that of section 6.5 where the parameters were
meta-optimized. Figure 10 shows how the performance relates to the choice of
crossover probability CR, which appears to be more lenient in its impact on the
performance. In particular, any value CR ∈ [0, 0.7] appears to be an acceptable
choice, although there appears to be a slight advantage to choices on the lower
side of CR ' 0.1, which also matches the findings in section 6.5. Figure 11 shows
how the performance relates to the choice of differential weight F , which appears
to yield best performance at F ' 0.65, with smaller values of F causing much
worse performance, and larger values causing gradually worse performance. This
also matches the meta-optimized parameters from section 6.5.

Since this brute-force approach to parameter tuning did locate parameter
combinations which made DE/rand/1/bin perform well on the benchmark suite,
one could ask if it would be possible to use such simple means of parameter
tuning in general. The brute-force approach is not generally viable however, be-
cause it took almost 26 hours to compute the performance measures for all
these parameter combinations, whereas this particular DE variant could be
meta-optimized in roughly 18 minutes (see table 13), which is approximately
1% of the computational time of the brute-force approach. Add to this the
Curse of Dimensionality which would incur an exponential increase in time-
usage for optimizers with more parameters. Take for instance the JDE variant
which has 9 parameters instead of just 3, for which it would require approxi-
mately 333743 years to compute a similarly fine-grained mesh, having a total of
229 ' 1.21 · 1012 parameter combinations in the mesh. Yet the meta-optimizer
from section 4 could tune the JDE parameters in less than 35 minutes, which is
a miniscule fraction of the time required by the brute-force approach.
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6.11 Tuning Process

This section depicts the process of parameter tuning. It was shown in sec-
tion 6.10 that the performance of DE/rand/1/bin was less influenced by the
CR parameter, and this section will therefore focus on the NP and F param-
eters of that DE variant. Figure 12 shows the meta-optimization process from
the experiments conducted in section 6.5. The lines show how the LUS meta-
optimizer replaces one choice of DE parameters with another if it improves
performance. The dots show parameter combinations which were contemplated
by the LUS meta-optimizer, but were discarded because they yielded worse per-
formance. Although there are many failed moves compared to the number of
successful moves taken by the LUS meta-optimizer, it should be noted that due
to the use of preemptive fitness evaluation the computations of these worsened
performance measures are aborted preemptively. Hence, it does not represent
as great a computational expense as appears. Figure 12 generally shows the
tuning effort is becoming centred around the best performing parameter combi-
nations, whose good ranges were previously deduced from figures 9 and 11. This
confirms visually that the employed meta-optimization approach works well.

6.12 Temporal Parameters

This section studies whether there is any need for changing parameters during
an optimization run, or if they can just as well be held fixed for the entire
duration. The DE/rand/1/bin variant is used as the basis of this experiment,
because it has all its parameters fixed during optimization. The population size
NP will remain fixed, because it would introduce semantic questions on which
DE agents should be kept and which discarded when the population size was
to decrease, and what should be done to new DE agents when the population
size should increase. But changing parameters CR and F , say, halfway during
an optimization run is straightforward. Making such parameters temporal is
done by replacing F with F1 and F2, and CR with CR1 and CR2, where the
parameters with index 1 are used in the first half of the optimization run, and
the parameters with index 2 are used in the last half of the run. It is possible to
make an arbitrarily long sequence of parameters this way, but merely halving
the optimization run will have to suffice for this study.

The brute-force approach from section 6.10 is also used here, for discovering
how the changing of parameters relate to optimization performance. A perfor-
mance mesh is computed having a resolution of 7 choices for each parameter,
hence consisting of 75 = 16807 mesh-points total, as there are now 5 control
parameters. This performance mesh took almost 41 hours to compute, and has
only one third of the resolution for each parameter compared to the mesh com-
puted in section 6.10. Although a mesh is needed for the study here, it is again
evident that it is not a suitable way of performing parameter tuning in general.

Using the data from the performance mesh, figure 13 shows how the differ-
ence CR1−CR2 relates to performance, thus showing whether there is an advan-
tage to having dissimilar crossover probabilities for each half of an optimization
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run. This is indeed the case, as figure 13 shows a performance advantage, when
the crossover probability for the first half of the optimization run is somewhat
lower than for the last half of the run (provided the other control parameters
are also tuned properly). The reverse is true for the differential weights F1 and
F2, whose relation to performance is shown in figure 14, from which it can be
seen that a performance advantage exists, when the differential weight for the
first half of an optimization run is somewhat higher than for the last half of the
run.

It could be interesting to see how big this performance advantage really
is. Since the performance mesh computed above is rather coarse, it will be
better to employ meta-optimization to find the temporal parameters that causes
DE to perform best. It should also be noted that even though we have just
introduced another set of DE parameters for the latter half of its optimization
run, there is no telling how this abrupt change of parameters will affect the
dynamic behaviour of the DE agents. One could then suggest using linearly or
otherwise smoothly changing parameters during an optimization run, but this
will likely have an altogether different effect on the dynamic behaviour of the DE
agents. An advantage of using the meta-optimization approach from section 4,
is that we need not understand the dynamic behaviour of the optimizer whose
parameters are being tuned. The temporal parameters found thus, are:

NP = 9

CR1 = 0.040135, CR2 = 0.576005

F1 = 0.955493, F2 = 0.320264

Using these temporal parameters when optimizing the benchmark problems
results in table 14, which for comparison has reprinted the results from table 7
of DE/rand/1/bin with fixed parameters. Although this is arguably a somewhat
coarse experiment, the results do perhaps indicate that there may not exist
any general advantage to using parameters that are changed somehow during
optimization, regardless of whether this parameter changing is done randomly,
adaptively, or at certain intervals according to known good values.

6.13 The Joker — DE/best/1/bin/simple

Although the general aim of this paper is to show whether one should use pa-
rameter tuning or adaptation, or both, and not to make an exhaustive search
for the universally best DE variant, the following study will further strengthen
the argument that one must always properly tune the parameters of an opti-
mization method before drawing conclusions about its performance. We have
thus far used the DE/rand/1/bin family of optimizers due to its popularity.
The DE/best/1/bin variant on the other hand, has been long out of favour with
researchers and practitioners because it is believed to have inferior performance
with tendencies for premature convergence [3] [21]. The DE/best/1/bin replaces
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Eq.(1) with the following:

yi =
{
gi + F · (ai − bi) , ri < CR ∨ i = R
xi , else

where ~g is the population’s best known solution until now. In the original ver-
sion of this, the agents ~a and ~b are chosen to be different not only from each
other, but also from the agent currently being processed, but it simplifies the im-
plementation a good deal if they need not be distinct from the agent ~x currently
being updated. In particular, first the index ra for agent ~a is chosen randomly
from {1, · · · , NP}, and then the index rb for the other agent is determined by:

rb =
{
ra + r′b , ra + r′b ≤ NP
ra + r′b −NP , else

where r′b ∈ {1, · · · , NP − 1} is picked randomly. This DE variant may be called
DE/best/1/bin/simple, nicknamed The Joker. Its parameters meta-optimized
to perform well on all twelve benchmark problems are:

NP = 172, CR = 0.965609, F = 0.361520 (4)

Comparing these parameters to the ones tuned for the DE/rand/1/bin variants
in table 6, the first striking thing is the big change in population size from
NP ' 10 toNP = 172. This clearly shows that one cannot make generalizations
about which population sizes should be used merely on whether a small or
large number of fitness evaluations are allowed during optimization. There
is in fact an intricate and mysterious relationship between DE algorithm, its
control parameters, the optimization problem at hand, optimization run-lengths
allowed, and the performance achieved. The second notable thing with these
tuned parameters is the almost reversal of magnitude in parameters CR and
F . Whether these are general tendencies for the DE/best/1/bin versus the
DE/rand/1/bin-varieties is left as a topic for future research.

The results of using these tuned parameters when optimizing the benchmark
functions are shown in table 15. Comparing these results to the ones for the
tuned DE/rand/1/bin variants in table 7 shows the DE/best/1/bin/simple vari-
ant to perform much better on the Schwefel1-2 and Rosenbrock problems, yet
having equally worse performance on e.g. the Rastrigin and Penalized2 prob-
lems. Figure 15 depicts the progress of tuning the parameters of DE/rand/1/bin
and DE/best/1/bin/simple, clearly showing the latter to be the easier to tune.
These findings will not be studied further in this paper, as it is not our aim here
to determine which DE variant is universally best. However, it does strengthen
the point to be made, that one should always properly tune the parameters
of an optimization method to get a clear indication of what performance the
optimizer is really capable of.

7 Discussion

This section is a deeper discussion of the experimental results and their impli-
cation for the research field in general.
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7.1 Hand-Tuning Versus Meta-Optimization

It is obvious from the experimental results that automated tuning of control
parameters can greatly improve the performance of an optimizer over using just
hand-tuned parameters. However, we still find reluctance amongst researchers
to start using meta-optimization, in part because they object to the large num-
ber of additional optimization runs that must be executed in the tuning process.
While it is true that one could instead use this computational time to merely
extend the ordinary optimization runs, there are strong points to be made in
favour of meta-optimization.

The control parameters must be tuned at least once, whether by hand or
otherwise. This remains an inescapable fact, for no researcher could publish a
new optimization method without providing good common choices of control pa-
rameters. Similarly no practitioner could solve an optimization problem without
knowing these and would probably also try a number of parameter combinations
for himself to see if they improve performance for the problem at hand. But
tuning control parameters by hand is a laborious task, especially as the number
of parameters increases, which causes an exponential increase in the number of
possible parameter combinations. And because the intrinsic meaning of the con-
trol parameters and their influence on optimization performance largely remains
a mystery, it is virtually impossible for a human to deduce which parameters
will cause the optimizer to perform well, reducing such hand-tuning to little
more than trial-and-error guesswork. In fact, promoting the use of hand-tuning
over an automated approach, would be similar to promoting hand-optimization
of an actual problem, which is of course just plain silly.

Furthermore, every practitioner must be familiar with premature conver-
gence, in which the optimizer stagnates at some point and cannot find improved
solutions in the search-space, seemingly no matter how long the optimizer is al-
lowed to run. At such a time the practitioner is left with two choices: Try
different control parameters, or try another optimizer altogether. But here
meta-optimization may also be of assistance because it allows for automatic
discovery of control parameters that alleviate premature convergence or at least
defers it. It is correct that there is an expense involved in the tuning process,
but it may be the only way of ever finding the global optimum for the problem
at hand.

When meta-optimizing control parameters for use on a real-world problem,
the additional optimization runs required might be prohibitive. This was indeed
the case with our study in [17] where parameter tuning could only be done for
the smallest problems due to the computational cost involved. It is therefore
important that one uses an optimizer whose performance generalizes to similar
problems, and DE appears to do this well. A suggestion is also to first tune the
parameters using benchmark problems that are fast to compute, and then use
the control parameters thus discovered on the real-world problem at hand. From
our experience it seems important that one uses several benchmark problems in
this tuning, and that the dimensionality and optimization run-lengths are similar
to the real-world problem in question. But this requires further investigation
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and is suggested as a topic for future research.

7.2 Parameter Tuning Versus Adaptation

Since adaptive parameters just introduce other, often additional, control pa-
rameters the above discussion on parameter tuning holds true for adaptive pa-
rameters as well. Parameter tuning should therefore always be employed at
least once. But do adaptive parameters have an advantage over parameters
that are held fixed during optimization? The experimental results suggest that
there is no general advantage to having so-called adaptive parameters as they
do not greatly alter the underlying dynamic behaviour of the optimizer. Rather
they just change it slightly giving the optimizer a small advantage on some
problems, but a disadvantage on other problems. The real performance im-
provement seems to stem from the changing of core aspects of the optimization
algorithm itself. This brings about another interesting topic, namely whether
one should aim for simple or complex optimization methods. The more complex
an optimization method becomes, the harder it is to describe and implement.
So if there is no general advantage to more complex optimization methods, then
one should clearly strive to develop ever simpler optimizers.

The literature contains many examples of complex variants of optimizers,
which were originally intended to be simple. The governing principle of Self-
Organization and Emergence as it occurs in nature is that simple individuals
cooperate and complex collective behaviour emerges. There is also increased
difficulty in analytically justifying more complex optimizers because their cor-
rectness cannot be proven as one would prove, say, sorting algorithms correct by
the use of invariants. Optimization methods which work by direct-search (that
is, they do not use gradients to guide their search) can currently only be proven
empirically. Some researchers have attempted making mathematical analyses,
but they are usually oversimplified and bear no real significance. For instance, a
convergence proof showing the global optimum is approached when the number
of iterations approaches infinity, has no real worth because the exact same thing
can be proven for completely random search. A good example of an optimizer
which is probably more complex than it should be, is the JDE variant studied
here. In their original description of JDE [9], the authors encode each agent’s F
and CR values in that agent’s solution vector ~x by extending the vector accord-
ingly. But since these F and CR values never themselves undergo the crossover
and mutation computation in Eq.(1), this encoding is not only unnecessary it
makes the presentation hard to comprehend. It would have been difficult to im-
plement JDE from the description in [9] had its authors not supplied us with the
actual source-code. Another good example of an optimizer that is made more
complex than it probably should be is the Stochastic Genetic Algorithm (StGA)
by Tu and Lu [47] which extends and tries to improve upon the simple Genetic
Algorithm of Holland [20]. While StGA did show improvement over other op-
timizers on a suite of benchmark problems, it eventually turned out the StGA
implementation had an error that made it strongly biased towards finding the
global optima of the benchmark problems considered [48]. Again, these issues
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arise from the fact that a direct-search optimizer cannot yet be proven correct
by analytical means, and the more complex an optimization method becomes
the harder it gets to describe the method clearly and hence make a correct im-
plementation. We therefore propose a new focus for researchers. That is, to
discover the core components that make direct-search optimizers work, and we
believe our meta-optimization approach will prove valuable in that process be-
cause it is an easy and fast way of tuning the control parameters of an optimizer,
to make it perform its best.

7.3 Generalization & Specialization Ability

It has been established that one should always properly tune the control param-
eters of an optimization method, in order to thoroughly assess the performance
it is capable of, and that the best way to do parameter tuning is by an auto-
mated approach such as the one presented in section 4. But a question arises on
how researchers should actually test their new optimizers in practice, to reveal
and compare the core performance capability against that of other optimizers.
Firstly we suggest using either a suite of benchmark functions with realistic op-
timization run-lengths, so there is a better chance of the results generalizing to
real-world problems, or one could use actual real-world problems as case stud-
ies. Secondly we suggest tuning the optimizer’s control parameters to unveil
the optimizer’s generalization and specialization abilities. The generalization
ability is documented by tuning the control parameters to perform well on a
few optimization problems and then by using these parameters on the remain-
ing problems to see how well the performance generalizes to problems for which
the parameters were not tuned. The specialization ability is documented by
tuning the control parameters to perform well on a single optimization prob-
lem of interest, to see how well the optimizer can be made to perform on one
problem at a time disregarding how expensive this would have to be for every
optimization problem a practitioner would encounter. These experiments may
also be combined when dealing with a group of seemingly related optimization
problems, so that parameter tuning is done for one single optimization problem,
and the parameters discovered thus would then be used on all the optimization
problems in question. This would be useful for time-consuming optimization
problems often encountered in the real-world.

7.4 No Free Lunch

The results of this study, showing that DE variants have comparable perfor-
mance when using various adaptive schemes for their control parameters, seems
to confirm the No Free Lunch (NFL) set of theorems by Wolpert and Macready
[49]. The most frequently quoted of the NFL theorems states that no optimizer
is universally better than another, when performance is compared over all possi-
ble optimization problems, and it is indeed striking how much the results in this
study resemble that statement, albeit for a selection of only twelve benchmark
problems. However, according to NFL one optimizer can actually be better
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aligned with certain kinds of optimization problems and hence yield improved
performance on these. The optimizer will then necessarily have to pay for this
with degraded performance on other problems. The challenge for a practitioner
is therefore to choose the optimizer best aligned with the problem at hand.
What is remarkable about the study here in relation to NFL, is that it indi-
cates the underlying alignment between optimizer and problem, does not appear
to change much under the use of adaptive schemes for the optimizer’s control
parameters, as otherwise believed by large parts of the research community.

7.5 Recommendations for Future Research

Apart from the recommendations for future research that have already been
made, a number of other topics should also be mentioned. One topic is the tun-
ing of control parameters to perform well with regard to other measures than
the one in figure 5 (which used the average performance obtained after a fixed
number of optimization iterations.) Other useful performance measures to tune
for could be the number of optimization iterations required to achieve a certain
goal, or perhaps the rate of convergence as measured by the integral of the fitness
progress. Another research topic of interest is the tuning of discrete control pa-
rameters, for instance to select between different combinations of sub-algorithms
for the optimizer, say, the crossover, mutation, and selection operators of DE.
Currently the LUS meta-optimizer only supports real-valued parameters, and
research would be needed to find a meta-optimizer, that is equally efficient for
use on discrete control parameters, as LUS is for real-valued parameters. In-
deed, an important research topic is what meta-optimizer is generally best. If
one is going to use the meta-optimizer often, then it makes sense to use the one
that performs best at this task. Finding the best meta-optimizer is in effect
Meta-Meta-Optimization, which is readily supported by the source-code used
in these experiments, and which is made available to the public as described be-
low. However, meta-meta-optimization is extraordinarily time-consuming and
we have yet to present actual results for this. Another interesting research topic
is the use of meta-optimization in the presence of multiple objectives, where
the meta-fitness would therefore also be multi-objective. Other research topics
would be the use of meta-optimization in the presence of constraints, and so on.

Beyond the issue of automatic tuning of control parameters, we feel the most
conceptually interesting, but also an even more challenging area of future re-
search, is the automatic discovery of an actual optimization algorithm. This
could for instance be done by the use of Genetic Programming (GP) of Koza
[50], that provides a means for optimizing programs or abstract data-structures
instead of just numerical values. Some preliminary results have been reported
in this area by Bengio et al. [51] and Radi and Poli [52], while the concept was
in fact suggested by Schmidhuber over two decades ago [53]. Recently Fukunaga
[16] showed that a simple GP could indeed evolve heuristics for solving combi-
natorial SAT problems rivalling state-of-the-art heuristics developed by human
researchers. But much work remains to be done, especially to automatically dis-
cover heuristics for numerical optimization over real-valued search-spaces, and
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also to produce as simple and graceful an approach as the one we have used here
for automatic tuning of just the control parameters. Taking the idea of evolving
an optimization algorithm one step further, it can be used in a bootstrapped
manner to gradually improve itself. Such an idea for general problem solving is
proposed in the most ambitious Gödel Machine, also by Schmidhuber [54] [55],
although it is not yet at an operational stage.

8 Conclusion

This was a study on whether the control parameters for DE should be adapted
during optimization, or if the parameters could just as well be held fixed, if they
were merely tuned properly. To fairly compare the performance of DE variants
against each other, their control parameters were all automatically tuned using
a meta-optimization approach. This uncovered the core performance capability
of the DE variants showing that there does not appear to be any general and
consistent advantage of the DE variants with adaptive control parameters. The
basic form of DE with its control parameters held fixed during optimization per-
forms roughly as well in terms of the end results achieved. Similar performance
characteristics were also prevalent with regard to the rate of convergence. In
fact, the only situation in which the DE variants with adaptive control param-
eters appeared to have an advantage over using fixed parameters was in terms
of their specialization ability. That is, if their control parameters were tuned
for just one problem then their performance was better on that one problem.
Whether this specialization ability exists on a wider set of optimization prob-
lems is not yet known. But it is ironic because those DE variants were devised
with the intent of having better generalization ability and so they would not
require tuning of their parameters for specific problems.

The general lesson to be learned from this study is that an optimizer’s con-
trol parameters must always be properly tuned to assess its true performance
capability. This holds even if some of the parameters are made adaptive, be-
cause then there are just other paramaters that need to be tuned such as the
endpoints of the range of adaptation. The fastest and easiest way of parameter
tuning is by an automated approach, such as our meta-optimization technique.
Whether more complex optimizers with so-called adaptive control parameters
hold a general and consistent performance advantage over simpler optimizers
using fixed control parameters is dubious.
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10 Source-Code

Source-code implemented in the ANSI C programming language and used in
the experiments in this paper, can be found in the SwarmOps library on the
internet address: http://www.Hvass-Labs.org/
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• Initialize all the agents with random positions / solutions in the search-
space.

• Until a termination criterion is met (e.g. a given number of fitness evalua-
tions have been executed, observed fitness stagnates, or a fitness threshold
is met), repeat:

– For each agent ~x in the population do:

∗ Pick three agents ~a, ~b, ~c at random, which must be distinct from
each other as well as ~x.

∗ Pick a random index R ∈ {1, · · · , n}, where the highest possible
value n, is the dimensionality of the problem f : Rn → R to be
minimized.

∗ Compute the agent’s potential new solution ~y = [y1, · · · , yn], by
iterating over each i ∈ {1, · · · , n} as follows:
· Pick ri ∼ U(0, 1)
· Compute the i’th element of the potentially new solution ~y,

using Eq.(1).
∗ If (f(~y) < f(~x)) then update the agent’s best known solution:

~x← ~y

Figure 1: DE algorithm.
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Sphere f(~x) =
∑n
i=1 x

2
i

Schwefel2-22 f(~x) =
∑n
i=1 |xi|+

∏n
i=1 |xi|

Schwefel1-2 f(~x) =
∑n
i=1

(∑i
j=1 xj

)2

Schwefel2-21 f(~x) = max {|xi| : i ∈ {1, · · · , n}}
Rosenbrock f(~x) =

∑n−1
i=1

(
100 · (xi+1 − x2

i )
2 + (xi − 1)2

)
Step f(~x) =

∑n
i=1 (bxi + 0.5c)2

QuarticNoise f(~x) =
∑n
i=1(i · x4

i + ri), ri ∼ U(0, 1)

Rastrigin f(~x) =
∑n
i=1

(
x2
i + 10− 10 · cos(2πxi)

)
Ackley

f(~x) = e+ 20− 20 · exp
(
−0.2 ·

√
1
n

∑n
i=1 x

2
i

)
− exp

(
1
n

∑n
i=1 cos(2πxi)

)
Griewank f(~x) = 1 + 1

4000

∑n
i=1 x

2
i −

∏n
i=1 cos

(
xi√
i

)

Penalized1

f(~x) = π
n

(
10 · sin2(πy1)

+
∑n−1
i=1 (yi − 1)2 ·

(
1 + 10 · sin2(πyi+1)

)
+ (yn − 1)2

)
+
∑n
i=1 u(xi, 10, 100, 4)

yi = 1 + (xi + 1)/4

u(xi, a, k,m) =


k(−xi − a)m , xi < −a
0 ,−a ≤ xi ≤ a
k(xi − a)m , xi > a

Penalized2
f(~x) = 0.1

(
sin2(3πx1) +

∑n−1
i=1 (xi − 1)2 ·

(
1 + sin2(3πxi+1)

)
+(xn − 1)2 ·

(
1 + sin2(2πxn)

) )
+
∑n
i=1 u(xi, 5, 100, 4), with u(·) from above.

Table 1: Benchmark problems used in this study.

34



• Initialize ~x to a random solution in the search-space:

~x ∼ U
(
~blo,~bup

)
Where ~blo and ~bup are the search-space boundaries.

• Set the initial sampling range ~d to cover the entire search-space:

~d← ~bup −~blo

• Until a termination criterion is met, repeat the following:

– Pick a random vector ~a ∼ U
(
−~d, ~d

)
– Add this to the current solution ~x, to create the new potential solu-

tion ~y:
~y = ~x+ ~a

– If (f(~y) < f(~x)) then update the solution:

~x← ~y

Otherwise decrease the search-range by multiplication with the factor
q from Eq.(3):

~d← q · ~d

Note that f : Rn → R is the meta-fitness algorithm from figure 5.

Figure 2: LUS algorithm.

Meta-Optimizer (LUS)

Optimizer (DE)

Actual Problem(s)

Figure 3: The concept of meta-optimization. The LUS optimization method is
used as an overlaid meta-optimizer for finding good control parameters for DE,
which in turn is used to optimize one or more actual problems.
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• Initialize the LUS meta-optimizer with a random choice of DE control
parameters.

• Perform a number of iterations of the LUS meta-optimizer, where each
iteration consists of the following:

– Determine a new choice of DE control parameters from the previously
best known parameters, according to the optimization methodology
of the LUS meta-optimizer.

– Compute a performance measure for how good these new poten-
tial DE parameters fare when DE is used to optimize a number of
problems. The algorithm for computing this meta-fitness measure is
shown in figure 5.

– Keep the new DE control parameters if the meta-fitness is an im-
provement, otherwise discard the parameters.

Figure 4: Overall algorithm for performing meta-optimization of DE control
parameters.

Problem Initialization Boundaries
Sphere [50, 100] [−100, 100]
Schwefel2-22 [5, 10] [−10, 10]
Schwefel1-2 [50, 100] [−100, 100]
Schwefel2-21 [50, 100] [−100, 100]
Rosenbrock [15, 30] [−100, 100]
Step [50, 100] [−100, 100]
QuarticNoise [0.64, 1.28] [−1.28, 1.28]
Rastrigin [2.56, 5.12] [−5.12, 5.12]
Ackley [15, 30] [−30, 30]
Griewank [300, 600] [−600, 600]
Penalized1 [5, 50] [−50, 50]
Penalized2 [5, 50] [−50, 50]

Table 2: Initialization ranges and search-space boundaries for the benchmark
problems. These values are used for all dimensions.
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• Initialize the problem-counter: i← 1, and the fitness-sum: s← 0

• While (i ≤M) and (s < L), do:

– Initialize the run-counter: j ← 1

– While (j ≤ N) and (s < L), do:

∗ Perform an optimization run on the i’th problem using DE with
the given choice of control parameters.

∗ Add the best fitness obtained in the run (call it f̄) to the fitness-
sum: s← s+ f̄

∗ Increment the run-counter: j ← j + 1

– Increment the problem-counter: i← i+ 1

• Sort the actual problems descendingly according to their contributions to
the overall fitness sum s. This will allow earlier preemptive abortion of
the meta-fitness evaluation next time.

• Return s to the overlaying meta-optimizer as the meta-fitness value of DE
with the given choice of control parameters.

Figure 5: Algorithm for performing a single meta-fitness evaluation in meta-
optimization, for rating the performance of DE with a given choice of control
parameters.

Basic NP ∈ {4, · · · , 200} CR ∈ [0, 1] F ∈ [0, 2]

Dither NP ∈ {4, · · · , 200} CR ∈ [0, 1]
Fmid ∈ [0, 2]
Frange ∈ [0, 3]

Jitter NP ∈ {4, · · · , 200} CR ∈ [0, 1]
Fmid ∈ [0, 2]
Frange ∈ [0, 3]

JDE NP ∈ {4, · · · , 200}

CRinit ∈ [0, 1]
CRl ∈ [0, 1]
CRu ∈ [0, 1]
τCR ∈ [0, 1]

Finit ∈ [0, 2]
Fl ∈ [0, 2]
Fu ∈ [0, 2]
τF ∈ [0, 1]

Table 3: Boundaries for the parameter search-spaces of DE/rand/1/bin variants
as used in all the meta-optimization experiments.
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Basic NP = 300 CR = 0.9 F = 0.5

Dither NP = 300 CR = 0.9
Fmid = 0.75
Frange = 0.25

Jitter NP = 300 CR = 0.9
Fmid = 0.5
Frange = 0.0005

JDE NP = 100

CRinit = 0.9
CRl = 0
CRu = 1
τCR = 0.1

Finit = 0.5
Fl = 0.1
Fu = 0.9
τF = 0.1

Table 4: Hand-tuned parameters for DE/rand/1/bin variants. Benchmark re-
sults for these parameters are found in table 5.

Problem Basic Dither Jitter JDE

Sphere 38621.4 (4548.21) 51852.9 (5586.94) 38016.2 (4017.8) 6436.98 (1053.79)
Schwefel2-22 113.81 (12.12) 2.18e+8 (5.1e+8) 1.5e+6 (3.18e+6) 41.86 (5.23)
Schwefel1-2 72882.7 (8989.52) 81794.7 (7984.69) 71020.1 (10460.3) 51656.8 (8882.9)
Schwefel2-21 78.9 (3.35) 83.63 (4.19) 78.72 (3.18) 64.41 (5.25)
Rosenbrock 1.17e+8 (2.49e+7) 1.27e+8 (2.69e+7) 1.09e+8 (2.98e+7) 9.08e+6 (3.17e+6)
Step 36961.7 (5420.24) 50946.4 (5148.09) 36811.8 (5068.24) 6183.1 (1162.32)
QuarticNoise 51.45 (10.89) 73.92 (14.46) 54.78 (10.12) 17.24 (1.43)
Rastrigin 348.03 (17.57) 383.34 (18.52) 347.85 (16.65) 245.3 (15.92)
Ackley 19.7 (0.37) 20.14 (0.16) 19.63 (0.35) 18.39 (1.28)
Griewank 347.13 (45.77) 464.52 (48.4) 350.73 (35.25) 62.54 (10.37)
Penalized1 6.1e+7 (2.03e+7) 1.55e+8 (4.43e+7) 5.89e+7 (1.85e+7) 466079 (392499)
Penalized2 1.34e+8 (3.81e+7) 3.11e+8 (7.89e+7) 1.34e+8 (3.72e+7) 2.05e+6 (1.17e+6)

Table 5: Results for DE/rand/1/bin variants when using the hand-tuned pa-
rameters from table 4. The problem dimensionalities are set to n = 30, and
n · 200 fitness evaluations are allowed per optimization run. Table shows the
average fitness results obtained over 50 optimization runs, with the numbers
in parentheses being the standard deviations. The statistically significant best
results for each problem are printed in bold face.

Basic NP = 10 CR = 0.031855 F = 0.733094

Dither NP = 7 CR = 0.021481
Fmid = 0.849680
Frange = 1.779813

Jitter NP = 11 CR = 0.096154
Fmid = 0.503464
Frange = 0.954235

JDE NP = 16

CRinit = 0.573335
CRl = 0.128144
CRu = 0.871238
τCR = 0.705309

Finit = 0.500358
Fl = 0.419994
Fu = 0.621257
τF = 0.573597

Table 6: Parameters for DE/rand/1/bin variants tuned to perform well on all
twelve benchmark problems on average. Benchmark results for these parameters
are found in table 7.
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Problem Basic Dither Jitter JDE

Sphere 3.56 (23.8) 1.03e-3 (1.22e-3) 0.14 (0.53) 206.99 (1399.43)
Schwefel2-22 0.08 (0.09) 5.13e-3 (2.15e-3) 0.02 (6.50e-3) 1.96 (2.37)
Schwefel1-2 21666.4 (4391.13) 36887 (7513.36) 26646.7 (4988.37) 20052.3 (5672.66)
Schwefel2-21 63.26 (2.57) 61.6 (2.71) 58.22 (3.46) 58.75 (5.82)
Rosenbrock 453.43 (203.38) 306.52 (454.55) 514.9 (708.73) 11519.2 (17512.5)
Step 23.12 (161.84) 0.14 (0.6) 23.76 (161.79) 3.06 (4.21)
QuarticNoise 15.29 (1.61) 14.78 (1.96) 13.85 (1.1) 12.43 (1.15)
Rastrigin 43.23 (14.81) 33.57 (13.58) 44.65 (13.21) 162.31 (16.36)
Ackley 11.94 (6.13) 13.03 (5.5) 16.46 (5.46) 19.83 (0.06)
Griewank 0.61 (2.29) 0.04 (0.04) 0.13 (0.08) 1.09 (0.1)
Penalized1 1.02e-7 (1.95e-7) 1.96e-9 (7.87e-9) 1.75e-11 (9.93e-11) 168.51 (821.97)
Penalized2 2.50e-3 (2.91e-3) 1.70e-3 (5.03e-3) 1.67e-3 (2.52e-3) 8.36 (8.86)

Table 7: Results for DE/rand/1/bin variants when using the parameters from
table 6 that were meta-optimized for all benchmark problems. The problem
dimensionalities are set to n = 30, and n · 200 fitness evaluations are allowed
per optimization run. Table shows the average fitness results obtained over 50
optimization runs, with the numbers in parentheses being the standard devia-
tions. The statistically significant best results for each problem are printed in
bold face.

Basic NP = 21 CR = 0.103123 F = 0.399898

Dither NP = 48 CR = 0.998966
Fmid = 0.547226
Frange = 2.549470

Jitter NP = 110 CR = 0.999320
Fmid = 0.508141
Frange = 0.006431

JDE NP = 31

CRinit = 0.970131
CRl = 0.976761
CRu = 0.023239
τCR = 0.501746

Finit = 1.728003
Fl = 0.321481
Fu = 1.379208
τF = 0.093426

Table 8: Parameters for DE/rand/1/bin variants tuned to perform well on just
the Schwefel1-2 problem. Benchmark results for these parameters are found in
table 10.

Basic NP = 9 CR = 0.248700 F = 0.725905

Dither NP = 7 CR = 0.000276
Fmid = 0.688212
Frange = 1.945058

Jitter NP = 8 CR = 0.023666
Fmid = 0.617744
Frange = 1.529568

JDE NP = 8

CRinit = 0.677320
CRl = 0.056926
CRu = 0.019076
τCR = 0.911053

Finit = 1.824508
Fl = 0.170150
Fu = 1.565926
τF = 0.160525

Table 9: Parameters for DE/rand/1/bin variants tuned to perform well on just
the Rosenbrock problem. Benchmark results for these parameters are found in
table 10.
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Problem Basic Dither Jitter JDE

Schwefel1-2 17077.9 (4747.5) 5628.92 (2699.03) 8209.57 (3314.26) 3219.09 (2337.94)

Rosenbrock 533.55 (315.5) 351.77 (388.41) 320.51 (256.90) 384.95 (816.29)

Table 10: Specialization ability of DE/rand/1/bin variants on the Schwefel1-2
and Rosenbrock benchmark problems. Each DE variant is first meta-optimized
to the problem in question, and the parameters thus discovered are then used
to optimize the problem and the results are displayed. The problem dimen-
sionalities are set to n = 30, and n · 200 fitness evaluations are allowed per
optimization run. Table shows the average fitness results obtained over 50 opti-
mization runs, with the numbers in parentheses being the standard deviations.
The statistically significant best results for each problem are printed in bold
face.

Basic NP = 8 CR = 0.131305 F = 0.776182

Dither NP = 7 CR = 0.001779
Fmid = 1.203716
Frange = 1.931654

Jitter NP = 7 CR = 0.170015
Fmid = 0.788930
Frange = 0.598157

JDE NP = 8

CRinit = 0.847650
CRl = 0.104456
CRu = 0.122205
τCR = 0.875351

Finit = 0.453133
Fl = 0.247631
Fu = 1.548331
τF = 0.659707

Table 11: Parameters for DE/rand/1/bin variants tuned to perform well on the
Sphere, Rastrigin, and Rosenbrock problems. All benchmark results for these
parameters are found in table 12.
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Problem Basic Dither Jitter JDE

Sphere 0.01 (0.02) 8.51e-3 (9.14e-3) 2.98e-3 (5.51e-3) 0.01 (0.02)
Schwefel2-22 0.62 (2.37) 0.02 (0.01) 1.64 (4.18) 1.17 (3.45)
Schwefel1-2 28483.5 (5299.23) 45693.2 (6551.02) 33009.7 (6637.83) 49706.9 (6636.66)
Schwefel2-21 54.05 (6.03) 65.94 (2.97) 55.08 (6.95) 53.02 (5.99)
Rosenbrock 1666.99 (8123.57) 377.38 (326.8) 518.79 (942.14) 576.19 (1392.01)
Step 0.3 (1.37) 0.02 (0.14) 1.68 (9.23) 1.74 (7.02)
QuarticNoise 13.86 (2.24) 14.44 (1.05) 14.93 (3.52) 13.05 (1.46)
Rastrigin 64.14 (13.09) 25.88 (15.68) 72.1 (19.74) 75.33 (15.7)
Ackley 18.15 (3.58) 11.31 (4.99) 17.28 (6.33) 19.49 (0.4)
Griewank 0.06 (0.07) 0.13 (0.07) 1.86 (12.64) 0.07 (0.07)
Penalized1 8.22e-11 (5.61e-10) 9.34e-6 (4.26e-5) 3.03e-12 (2.12e-11) 1198.06 (8386.4)
Penalized2 2.05e-3 (3.57e-3) 1.78e-3 (6.57e-3) 298.33 (2088.03) 0.13 (0.44)

Table 12: Generalization ability of DE/rand/1/bin variants with parameters
meta-optimized for three benchmark problems (Sphere, Rosenbrock, and Ras-
trigin). The problem dimensionalities are set to n = 30, and n · 200 fitness
evaluations are allowed per optimization run. Table shows the average fitness
results obtained over 50 optimization runs, with the numbers in parentheses
being the standard deviations. The statistically significant best results for each
problem are printed in bold face.

Variant Duration/Seconds

1
2

B
n
ch

. Basic 1073
Dither 1412
Jitter 1705
JDE 2074

3
B

n
ch

. Basic 241
Dither 251
Jitter 434
JDE 523

Table 13: Time usage for performing meta-optimization of DE/rand/1/bin
variants using all twelve or only three benchmark problems.
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Figure 6: Optimization progress on the Sphere problem for DE/rand/1/bin
variants, using the parameters from section 6.7 which were tuned for the Sphere,
Rosenbrock, and Rastrigin problems. Fitness trace is averaged over 50 optimiza-
tion runs, and fitness axis is log-scaled. Plot shows comparable progress for all
but the DE Jitter variant, which is more erratic from half-way through opti-
mization but finds slightly better solutions towards the end.
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Figure 7: Optimization progress on the Griewank problem for DE/rand/1/bin
variants, using the parameters from section 6.7 which were tuned for the Sphere,
Rosenbrock, and Rastrigin problems. Fitness trace is averaged over 50 optimiza-
tion runs, and fitness axis is log-scaled. Although there is a slight difference in
the final results achieved by these DE variants, their progress is comparable and
exhibits a clearly similar curvature.
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Figure 8: Meta-optimization progress for DE/rand/1/bin variants, showing
how easy or hard they are to tune. Meta-fitness axis is log-scaled.
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Figure 9: Performance of DE/rand/1/bin for different choices of NP when also
varying parameters CR and F . Only entries with a meta-fitness below 1e+12
are shown, and the diamond indicates the best of these. Meta-fitness axis is
log-scaled. Performance clearly worsens with increased population size NP .
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Figure 10: Performance of DE/rand/1/bin for different choices of CR when
also varying parameters NP and F . Only entries with a meta-fitness below
1e+8 are shown, and the diamond indicates the best of these. Meta-fitness axis
is log-scaled. Meta-fitness axis is log-scaled. Good choices of CR appear to be
roughly in the range [0, 0.7].

Problem Temporal Fixed

Sphere 35.13 (21.67) 3.56 (23.8)
Schwefel2-22 1.15 (0.26) 0.08 (0.09)
Schwefel1-2 15985.4 (5159.88) 21666.4 (4391.13)
Schwefel2-21 67 (2.82) 63.26 (2.57)
Rosenbrock 2991.78 (3321.16) 453.43 (203.38)
Step 23.8 (18.68) 23.12 (161.84)
QuarticNoise 11.44 (0.83) 15.29 (1.61)
Rastrigin 54.84 (9.31) 43.23 (14.81)
Ackley 17.99 (2.62) 11.94 (6.13)
Griewank 1.45 (0.67) 0.61 (2.29)
Penalized1 9.56e-4 (5.70e-3) 1.02e-7 (1.95e-7)
Penalized2 0.89 (0.52) 2.50e-3 (2.91e-3)

Table 14: Results for DE/rand/1/bin with temporal parameters meta-
optimized for all benchmark problems. Results for fixed parameters are
reprinted from table 7. The problem dimensionalities are set to n = 30, and
n · 200 fitness evaluations are allowed per optimization run. Table shows the
average fitness results obtained over 50 optimization runs, with the numbers
in parentheses being the standard deviations. The statistically significant best
results for each problem are printed in bold face.
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Figure 11: Performance of DE/rand/1/bin for different choices of F when also
varying parameters NP and CR. Only entries with a meta-fitness below 1e+10
are shown, and the diamond indicates the best of these. Meta-fitness axis is
log-scaled. Good choices of F appear to be in the range [0.5, 1].

Problem Result

Sphere 1.22e-3 (3.29e-3)
Schwefel2-22 117.84 (68.26)
Schwefel1-2 2736.15 (2480.4)
Schwefel2-21 57.25 (11.68)
Rosenbrock 190.54 (190.84)
Step 568.2 (1436)
QuarticNoise 27.97 (6.71)
Rastrigin 354.40 (62.84)
Ackley 19.75 (0.09)
Griewank 0.05 (0.06)
Penalized1 6.36e-20 (4.20e-19)
Penalized2 28.77 (10.03)

Table 15: Results for DE/best/1/bin/simple with parameters meta-optimized
for all benchmark problems. The problem dimensionalities are set to n = 30,
and n · 200 fitness evaluations are allowed per optimization run. Table shows
the average fitness results obtained over 50 optimization runs, with the numbers
in parentheses being the standard deviations. Results printed in bold face are
statistically significantly better than all the results in table 7.
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Figure 12: This plot demonstrates the process of meta-optimizing parameters
NP and F for DE/rand/1/bin, by showing two things combined: 1) The lines
show the successful DE parameter improvements of the LUS meta-optimizer for
six different tuning runs. 2) The dots show the unsuccessful moves of these
six meta-optimization runs, that is, the DE parameter combinations that were
contemplated by the greedy LUS method, but were not accepted as they lead to
worse DE performance. This demonstrates how the LUS meta-optimizer closes
in on the most promising region of DE parameters (refer to figures 9 and 11 to
see what those regions are).
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Figure 13: Performance of DE/rand/1/bin with temporal parameters. Plot
shows the performance of choosing different values for CR1 and CR2, when also
varying parameters NP , F1 and F2. Only entries with a meta-fitness below
1e+8 are shown. Meta-fitness axis is log-scaled. Best performance is achieved
when the crossover probability for the first half of an optimization run (CR1)
is somewhat lower than for the last half of the run (CR2).
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Figure 14: Performance of DE/rand/1/bin with temporal parameters. Plot
shows the performance of choosing different values for F1 and F2, when also
varying parameters NP , CR1 and CR2. Only entries with a meta-fitness below
1e+8 are shown. Meta-fitness axis is log-scaled. Best performance is achieved
when the differential weight for the first half of an optimization run (F1) is
somewhat higher than for the last half of the run (F2).
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Figure 15: Meta-optimization progress for the DE/rand/1/bin and
DE/best/1/bin/simple variants, showing the latter is clearly the easiest to tune.
Meta-fitness axis is log-scaled.
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