
Good Parameters
for

Differential Evolution
By

Magnus Erik Hvass Pedersen
Hvass Laboratories

Technical Report no. HL1002
2010

Abstract

The general purpose optimization method known as Differential Evo-
lution (DE) has a number of parameters that determine its behaviour and
efficacy in optimizing a given problem. This paper gives a list of good
choices of parameters for various optimization scenarios which should help
the practitioner achieve better results with little effort.

Keywords: Numerical optimization, differential evolution, parame-
ters.

1 Introduction

The optimization method known as Differential Evolution (DE) was originally
introduced by Storn and Price [1] and offers a way of optimizing a problem
without using its gradient. This is particularly useful if the gradient is difficult
or even impossible to derive.

DE maintains a population of agents which are iteratively combined and
updated using simple formulae to form new agents. The practitioner has to
set a number of behavioural parameters that influence the performance of this
process, see for example Storn et al. [2] [3], Liu and Lampinen [4], and Zaharie
[5]. There has been a trend in recent years to try and make the DE parameters
automatically adapt to new problems during optimization, hence alleviating
the need for the practitioner to select the parameters by hand, see for example
Price et al. [3], Liu and Lampinen [6], Qin et al. [7] [8], and Brest et al.
[9]. But these DE variants with so-called adaptive parameters just introduce
new parameters that must then be set by the practitioner and has therefore
merely deferred this difficult issue without actually eliminating it. Furthermore,
we have previously demonstrated that basic DE variants with properly tuned
parameters have comparable performance [10] [11].

This paper gives the practitioner a table of DE parameters that have been
tuned for different optimization scenarios.

2 Differential Evolution

Consider a fitness (or cost, error, objective) function:

f : Rn → R

1

To minimize the fitness function f find ~a ∈ Rn so that:

∀~b ∈ Rn : f(~a) ≤ f(~b)

Then ~a is called a global minimum for the function f . It is usually not possible
to pinpoint the global minimum exactly in optimization and candidate solutions
with sufficiently good fitness are deemed acceptable for practical reasons.

In DE the candidate solutions are called agents and are denoted ~x ∈ Rn.
They are initially placed at random positions in the search-space and are it-
eratively updated by combining a number of agents from the population and
keeping the new agent if it improves on the fitness.

Small changes to the DE implementation can cause dramatic changes in the
behavioural parameters that cause good optimization performance. The param-
eters given in this paper have been tuned for the DE/rand/1/bin algorithm in
figure 1. If your DE implementation differs from this you may need to alter it
to use the parameters listed here.

3 Meta-Optimization

The DE parameters in table 1 have been found by way of meta-optimization,
that is, the use of another overlying optimizer to tune the DE parameters for dif-
ferent optimization scenarios. The concept is depicted in figure 2 and described
in detail in [10].

The DE parameters have been tuned for the benchmark problems in table 2
using various dimensionalities and optimization run-lengths. Note that the op-
timum has been displaced according to the values in table 3 to avoid unintended
attraction of the DE agents to zero which also happens to be the global opti-
mum of most of these benchmark problems. All 12 benchmark problems have
been used in meta-optimization to yield behavioural parameters that should
work well in general, although for some of the larger meta-optimization scenar-
ios, e.g. the 100 dimensional cases, only the Ackley, Rastrigin, Rosenbrock and
Schwefel1-2 problems were used so as to save computation time.

Time usage for meta-optimization of the smallest problem configurations
(2 dimensions and 400 fitness evaluations) were mere seconds while up to 24
hours were used for the larger problem configurations when executed on a 1.6
GHz Intel CPU. Using a modern multi-core CPU would decrease the time usage
considerably and is readily supported in the source-code linked to below.

4 Example Usage

If you need to optimize a problem using few fitness evaluations, say, a 4-
dimensional problems using 100 fitness evaluations, or a 1,000-dimensional prob-
lem using 30,000 fitness evaluations, then DE may not be the right choice of
optimizer. Instead you may want to use optimizers that were specifically de-
signed for short optimization runs, see e.g. Pattern Search (PS) and Local
Unimodal Sampling (LUS) in [10].

2

Now assume you are tasked with optimizing a series of problems in 40 di-
mensions each and you can perform 500,000 fitness evaluations on each problem,
what DE parameters should you use? Consulting table 1 we see that this exact
scenario is not listed. The practitioner will then try with the closest match and
if that does not yield satisfactory results then try the next closest match, etc. In
this case the closest match seems to be the parameters tuned for 30 dimensions
and 600,000 fitness evaluations:

NP = 75, CR = 0.8803, F = 0.4717

where NP is the number of agents in the population. Using these parameters
in optimizing the benchmark problems results in table 4 and figures 3 and 4.
On most of these problems the results are close to the optimal fitness values of
zero, but the Rastrigin, Rosenbrock and Schwefel2-21 problems were not quite
solved. Then the practitioner would have to decide if other parameters from
table 1 should be tried, perhaps the parameters tuned for 50 dimensions and
100,000 fitness evaluations, or 20 dimensions and 400,000 fitness evaluations.
If those fail as well then the practitioner would need to either meta-optimize
the DE parameters specifically for these remaining problems or use another
optimization method. (All these problems are optimized well in [12].)

5 Conclusion

This paper presented a table of DE parameters that may be used by the prac-
titioner as a first choice when optimizing new problems. The parameters were
tuned (meta-optimized) to perform well on several benchmark problems with
various dimensionalities and optimization run-lengths.

6 Source-Code

Source-code implemented in the C# programming language and used in the
experiments in this paper can be found in the SwarmOps library on the internet
address: http://www.Hvass-Labs.org/

References

[1] R. Storn and K. Price. Differential evolution - a simple and efficient heuris-
tic for global optimization over continuous spaces. Journal of Global Opti-
mization, 11:341 – 359, 1997.

[2] R. Storn. On the usage of differential evolution for function optimization. In
Biennial Conference of the North American Fuzzy Information Processing
Society (NAFIPS), pages 519–523, Berkeley, CA, USA, 1996.

[3] K. Price, R. Storn, and J. Lampinen. Differential Evolution – A Practical
Approach to Global Optimization. Springer, 2005.

3

http://www.Hvass-Labs.org/

[4] J. Liu and J. Lampinen. On setting the control parameter of the differential
evolution method. In Proceedings of the 8th International Conference on
Soft Computing (MENDEL), pages 11–18, Brno, Czech Republic, 2002.

[5] D. Zaharie. Critical values for the control parameters of differential evo-
lution algorithms. In Proceedings of MENDEL 2002, 8th International
Mendel Conference on Soft Computing, pages 62–67, Bruno, 2002.

[6] J. Liu and J. Lampinen. A fuzzy adaptive differential evolution algorithm.
Soft Computing, 9(6):448–462, 2005.

[7] A.K. Qin and P.N. Suganthan. Self-adaptive differential evolution algo-
rithm for numerical optimization. In Proceedings of the IEEE congress on
evolutionary computation (CEC), pages 1785–1791, 2005.

[8] A.K. Qin, V.L. Huang, and P.N. Suganthan. Differential evolution algo-
rithm with strategy adaptation for global numerical optimization. IEEE
Transactions on Evolutionary Computation, 13:398–417, 2009.

[9] J. Brest, S. Greiner, B. Bošković, M. Mernik, and V. Žumer. Self-adapting
control parameters in differential evolution: a comparative study on nu-
merical benchmark functions. IEEE Transactions on Evolutionary Com-
putation, 10(6):646–657, 2006.

[10] M.E.H. Pedersen. Tuning & Simplifying Heuristical Optimization. PhD
thesis, School of Engineering Sciences, University of Southampton, Eng-
land, 2010.

[11] M.E.H. Pedersen and A.J. Chipperfield. Tuning differential evolution for
artificial neural networks. In S.J. Kwon, editor, Artificial Neural Networks.
Nova Publishers, 2011.

[12] M.E.H. Pedersen. Good parameters for particle swarm optimization. Tech-
nical Report HL1001, Hvass Laboratories, 2010.

4

• Initialize all agents ~x ∈ Rn with random positions in the search-space:

~x ∼ U(~blo,~bup)

where ~blo and ~bup are the lower and upper boundaries of the search-space.

• Until a termination criterion is met, repeat the following:

– For each agent ~x in the population do the following:

∗ Pick three agents ~a, ~b and ~c from the population at random, they
must be distinct from each other as well as from agent ~x.

∗ Pick a random index R ∈ {1, · · · , n}, where the highest possible
value n, is the dimensionality of the problem to be optimized.

∗ Compute the agent’s potentially new position ~y = [y1, · · · , yn],
by iterating over each i ∈ {1, · · · , n} as follows:
· Pick ri ∼ U(0, 1) for use in a stochastic choice next.
· Compute the i’th element of the potentially new position ~y:

yi =
{
ai + F (bi − ci) , if (i = R) or (ri < CR)
xi , else

Where the user-defined behavioural parameters are the dif-
ferential weight F and the crossover probability CR.

∗ Bound the position ~y, that is, for all dimensions i update yi:

yi ←

 bloi
, yi < bloi

bupi
, yi > bupi

yi , else

∗ If (f(~y) < f(~x)) then update the agent’s position:

~x← ~y

• Now the agent ~x from the population having the lowest fitness f(~x) is the
best found position.

Figure 1: DE pseudo-code.

5

Meta-Optimizer

Optimizer

Benchmark Problems

Figure 2: The concept of meta-optimization. Another optimization method is
used as an overlying meta-optimizer for finding good behavioural parameters of
DE, which in turn is used to optimize benchmark problems.

Problem Fitness DE Parameters
Dimensions Evaluations NP CR F

2 400 13 0.7450 0.9096
10 0.4862 1.1922

2 4,000 24 0.2515 0.8905
20 0.7455 0.9362

5 1,000 17 0.7122 0.6301
5 10,000 20 0.6938 0.9314

10 2,000 28 0.9426 0.6607
12 0.2368 0.6702

10 20,000 18 0.5026 0.6714
20 40,000 37 0.9455 0.6497
20 400,000 35 0.4147 0.5983
30 600,000 75 0.8803 0.4717
50 100,000 48 0.9784 0.6876
100 200,000 46 0.9565 0.5824

Table 1: DE parameters for various problem configurations. The practitioner
should select the DE parameters where the dimensionality and allowed number
of fitness evaluations most closely match those of the optimization problem at
hand. For some problem configurations multiple parameters are listed as they
had almost the same optimization performance.

6

1e-016

1e-014

1e-012

1e-010

1e-008

1e-006

0.0001

0.01

1

100

0 100000 200000 300000 400000 500000

F
it

ne
ss

Iteration

Ackley

DE/rand/1/bin

0.0001

0.001

0.01

0.1

1

10

100

1000

10000

0 100000 200000 300000 400000 500000
F

it
ne

ss
Iteration

Griewank

DE/rand/1/bin

1e-035

1e-030

1e-025

1e-020

1e-015

1e-010

1e-005

1

100000

1e+010

0 100000 200000 300000 400000 500000

F
it

ne
ss

Iteration

Penalized1

DE/rand/1/bin

1e-035

1e-030

1e-025

1e-020

1e-015

1e-010

1e-005

1

100000

1e+010

0 100000 200000 300000 400000 500000

F
it

ne
ss

Iteration

Penalized2

DE/rand/1/bin

10

100

1000

10000

0 100000 200000 300000 400000 500000

F
it

ne
ss

Iteration

QuarticNoise

DE/rand/1/bin

10

100

1000

0 100000 200000 300000 400000 500000

F
it

ne
ss

Iteration

Rastrigin

DE/rand/1/bin

Figure 3: DE optimization performance. Plots show the mean fitness achieved
over 50 optimization runs as well as the quartiles at intervals during optimiza-
tion.

7

10

100

1000

10000

100000

1e+006

1e+007

0 100000 200000 300000 400000 500000

F
it

ne
ss

Iteration

Rosenbrock

DE/rand/1/bin

1e-008

1e-006

0.0001

0.01

1

100

10000

1e+006

1e+008

1e+010

0 100000 200000 300000 400000 500000
F

it
ne

ss
Iteration

Schwefel 1-2

DE/rand/1/bin

10

100

1000

0 100000 200000 300000 400000 500000

F
it

ne
ss

Iteration

Schwefel 2-21

DE/rand/1/bin

1e-020

1e-010

1

1e+010

1e+020

1e+030

1e+040

0 100000 200000 300000 400000 500000

F
it

ne
ss

Iteration

Schwefel 2-22

DE/rand/1/bin

1e-090

1e-080

1e-070

1e-060

1e-050

1e-040

1e-030

1e-020

1e-010

1

1e+010

0 100000 200000 300000 400000 500000

F
it

ne
ss

Iteration

Sphere

DE/rand/1/bin

0.01

0.1

1

10

100

1000

10000

100000

1e+006

0 100000 200000 300000 400000 500000

F
it

ne
ss

Iteration

Step

DE/rand/1/bin

Figure 4: DE optimization performance. Plots show the mean fitness achieved
over 50 optimization runs as well as the quartiles at intervals during optimiza-
tion.

8

Ackley f(~x) = e+ 20− 20 · exp
(
−0.2 ·

√
1
n

∑n
i=1 x

2
i

)
− exp

(
1
n

∑n
i=1 cos(2πxi)

)
Griewank f(~x) = 1 + 1

4000

∑n
i=1 x

2
i −

∏n
i=1 cos

(
xi√
i

)

Penalized1

f(~x) = π
n

(
10 · sin2(πy1)

+
∑n−1
i=1 (yi − 1)2 ·

(
1 + 10 · sin2(πyi+1)

)
+ (yn − 1)2

)
+
∑n
i=1 u(xi, 10, 100, 4)

yi = 1 + (xi + 1)/4

u(xi, a, k,m) =

 k(−xi − a)m , xi < −a
0 ,−a ≤ xi ≤ a
k(xi − a)m , xi > a

Penalized2
f(~x) = 0.1

(
sin2(3πx1) +

∑n−1
i=1 (xi − 1)2 ·

(
1 + sin2(3πxi+1)

)
+(xn − 1)2 ·

(
1 + sin2(2πxn)

))
+
∑n
i=1 u(xi, 5, 100, 4), with u(·) from above.

QuarticNoise f(~x) =
∑n
i=1(i · x4

i + ri), ri ∼ U(0, 1)
Rastrigin f(~x) =

∑n
i=1

(
x2
i + 10− 10 · cos(2πxi)

)
Rosenbrock f(~x) =

∑n−1
i=1

(
100 · (xi+1 − x2

i)
2 + (xi − 1)2

)
Schwefel1-2 f(~x) =

∑n
i=1

(∑i
j=1 xj

)2

Schwefel2-21 f(~x) = max {|xi| : i ∈ {1, · · · , n}}
Schwefel2-22 f(~x) =

∑n
i=1 |xi|+

∏n
i=1 |xi|

Sphere f(~x) =
∑n
i=1 x

2
i

Step f(~x) =
∑n
i=1 (bxi + 0.5c)2

Table 2: Benchmark problems.

Problem Initialization Search-Space Displacement δ
Ackley [15, 30] [−30, 30] -7.5
Griewank [300, 600] [−600, 600] -150
Penalized1 [5, 50] [−50, 50] 0
Penalized2 [5, 50] [−50, 50] 0
QuarticNoise [0.64, 1.28] [−1.28, 1.28] -0.32
Rastrigin [2.56, 5.12] [−5.12, 5.12] 1.28
Rosenbrock [15, 30] [−100, 100] 25
Schwefel1-2 [50, 100] [−100, 100] -25
Schwefel2-21 [50, 100] [−100, 100] -25
Schwefel2-22 [5, 10] [−10, 10] -2.5
Sphere [50, 100] [−100, 100] 25
Step [50, 100] [−100, 100] 25

Table 3: Initialization ranges, search-space boundaries, and displacement values
δ for the benchmark problems. Displacement is done by using an auxiliary
fitness function h(~x) = f(~x − δ) to avoid unintended attraction of DE agents
to the zero-position which happens to be the optimal solution for most of these
problems.

9

Problem Mean Std.Dev. Min Q1 Median Q3 Max
Ackley 5.45e-15 1.68e-15 3.11e-15 3.11e-15 6.66e-15 6.66e-15 6.66e-15
Griewank 1.48e-4 1.04e-3 0 0 0 0 7.4e-3
Penalized1 0.04 0.15 1.18e-32 1.18e-32 1.18e-32 1.18e-32 0.95
Penalized2 0.06 0.31 1.35e-32 1.72e-32 2.21e-32 2.71e-32 1.61
QuarticNoise 13.16 0.51 11.66 12.84 13.21 13.54 13.95
Rastrigin 35.21 25.5 8.95 17.91 24.38 45.18 104.44
Rosenbrock 21.1 1.91 15.89 19.86 20.88 21.98 25.41
Schwefel1-2 8.59e-7 1.2e-6 8.95e-8 2.28e-7 3.39e-7 9.25e-7 6.6e-6
Schwefel2-21 65.56 8.72 35.6 60.85 66.08 71.99 83.25
Schwefel2-22 4.09e-16 5.01e-16 0 0 4.44e-16 8.88e-16 2.22e-15
Sphere 3.87e-89 1.21e-88 1.78e-92 1.16e-90 3.21e-90 1.08e-89 6.89e-88
Step 0 0 0 0 0 0 0

Table 4: Optimization end results for DE when the benchmark problems have
40 dimensions and 500,000 fitness evaluations have been performed.

10

	Introduction
	Differential Evolution
	Meta-Optimization
	Example Usage
	Conclusion
	Source-Code

