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1 Introduction

The purpose of this report is to verify attendance of the author to the Algo-
rithms in BioInformatics course part II, at the department of computer science,
University of Aarhus.

The reader is assumed to be familiar with the problem description as well
as the course litterature. Following an outline of the problem, a heuristic algo-
rithm for finding a viable solution is given, and then the actual programming is
described along with experimental results.

2 Protein Folding

Consider a string S ∈ {h, p}∗ that is to be folded inside a lattice, in such a
way that it is self-avoiding, and the number of non-connected but adjacent
h’s is maximized. This may be posed as a minimization problem instead, by
attributing a score of -1 to each pair of such h’s. Denote the total score of a
folding x of the string S, as the function fS(x) which takes its values in N−.

3 Genetic Algorithm

As the set of possible foldings grows exponentially with the length of the protein-
sequence S, a heuristic approach for minimizing fS is needed for all but the
shortest sequences. One approach is known as a Genetic Algorithm (GA) in-
spired by Darwinian evolution, in which a population of solutions is maintained,
and in each iteration of the algorithm, a new population is created by combin-
ing fit agents from the parent population and altering their features at random.
The three operators in play are known as selection, crossover, and mutation,
and are detailed below for protein foldings.

The GA described here is plain vanilla without any bells or whistles. It is
inspired by the GA given in [1], but is not an exact replica.

3.1 Encoding

To use a GA, we need to encode a solution x in each agent of its population.
For a protein folding, the characters in S have upward, downward, leftward,
or rightward connections to its neighbouring characters. However, as becomes
evident below, it makes more sense to encode a folding with relative directions,
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that is, whether the folding continues, turns left or turns right. The set of
possible sequences of foldings is therefore given by:

F = {c, l, r}|S|−1

where |S| − 1 is the number of foldings for a protein of length |S|.
Since it is meaningless to continue for the first fold, we always start a folding

sequence with a right-turn, so that x[1] = r for all foldings x. Because of
symmetry of foldings, this is no limitation.

3.2 Selection

Selecting a better fit solution, is simply done by considering two randomly picked
solutions, and choosing the best fit. This is known as tournament selection with
a tournament-size of 2.

3.3 Crossover

Given two parent foldings x, y ∈ F selected from the GA population as described
above, and of equal length: |x| = |y|, we may pick an index i randomly from
{1, · · · , |x|}, and create the child z from concatenating substrings of x and y:

z = x[1 · · · i]y[i + 1 · · · |y|]

Since the enconding of a folding is relative, this concatenation does not require
x[i] and y[i + 1] to be adjusted, as it would with absolute encoding, e.g. if x[i]
was a right-fold and y[i + 1] a left-fold, then z would be invalid already.

3.4 Mutation

Given a string x, we decide randomly for each element xi whether or not to
mutate it. That is, for each xi of x, if (r < pm) then let xi be a randomly
picked element from F , and with r ∼ U(0, 1) being picked at random for each
xi. Because the coding is relative, this means that we wrap the left- and right-
hands of x angularly around the mutated point xi.

3.5 Validity & Initialization

That the parental foldings are valid (that is, they are self-avoiding walks in the
lattice), is no guarantee for the child of a crossover or the result of mutation to
be valid. Therefore, the steps in the algorithm below that employ crossover and
mutation, are iterated until a valid solution is created. However, much fewer
iterations are required if the parental strings are valid, than if they are not.
This also means that valid initial foldings should be chosen, to avoid the first
iteration of the GA taking too much time.

Randomly generating the initial foldings until valid ones are found, obviously
does not solve this problem, and merely becomes increasingly time-consuming
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with longer protein sequences. A simple solution is therefore to let the first
fold be a right-turn, and then let the rest be continues, which yields a folding
having zero fitness. A more interesting way of initialization is used here, which
makes a spiral for each initial folding, that usually has a decent fitness for a
deterministic guess.

3.6 Algorithm

The following algorithm performs a single optimizational run of the GA:

• Initialize the agents in the population P as described in section 3.5, and
compute their fitnesses.

• Repeat the following a number of times:

– Create a temporary and initially empty population P ′.

– Repeat the following until |P ′| = |P |: If (r < pc) then find two
agents x and y from P by tournament selection from section 3.2
(with r ∼ U(0, 1) being picked for each evaluation of the condition),
and create z by crossover of x and y. Otherwise simply find z from
P by tournament selection. In either case, if (r < pm) then mutate
z (again with r ∼ U(0, 1) being picked for each evaluation of the
condition). Finally, if z is valid, compute its fitness and add it to P ′.

– Replace the population with the newly created: P ← P ′.

The algorithm implemented here, furthermore ensures that the best known
solution is always added to P ′, which is known as an elitist GA. Also note that
each z that is invalid, still counts as an agent-step below.

4 Implementation

The above algorithms are implemented in MS Visual C++ .NET. The GA im-
plementation is found in LSwarmGA which derives from LSwarm, both of which are
taken from a more general numerical optimization implementation, simplified
and specialized for the present work.

Agents in the GA population are instances of the LVector-class, which is
sub-classed to LVectorPF, implementing crossover and mutation for strings over
the folding-alphabet F .

The fitness of an agent in the GA population, is evaluated through an
LProteinFolding-object, which implements filling of the lattice etc. This has
O(n) running-time for each fitness-evaluation, and has O(n2) space-usage with
n = |S|. The lattice is implemented as an (n + 1)× (n + 1) double-array which
uses simple modulo-arithmetics to allow the folding to work in every direction,
starting at entry (0, 0). For very long protein sequences however, it should be
possible to use a set- or map-like data-structure to achieve O(n) space-usage
and O(n · log(n)) time-usage.
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Conversion between relative and absolute formats of foldings, as well as
textual representations, is provided in the file FoldingCoding.h, and is achieved
through simple arithmetic operations instead of using switch-constructs.

4.1 Testing

Testing was performed in steps during development. First LProteinFolding
was tested with protein sequences and known foldings, primarily taken from [1],
and then some erroneous foldings also. When no more errors were uncovered,
conversion between the different formats of folding sequences was tested and
checked by hand. Then LVectorPF was implemented, and simple iterative al-
gorithms were created and tested on the protein sequences below. Finally, the
GA algorithm was implemented and modified from a previous (real-coded) im-
plementation, and various aspects were tested and modified, until the algorithm
was suitable for protein folding.

5 Experimental Results

For these experiments, the GA population has 100 agents, and the parameters
are: pm = 3/|S| and pc = 0.3. For all protein sequences, 10 optimizational
runs of the GA algorithm are performed, each with approximately |S| · 30000
agent-steps. The best found solutions for the proposed protein sequences, are
as follows:

1. The best found folding for the first protein sequence, is:

S = hphpphhphpphphhpphph

x = ruuldlululddrdldrrul

fS(x) = −9
t = 19 seconds

Which is an optimal folding.

2. The best found folding for the second protein sequence, is:

S = hhhpphphphpphphphpph

x = ruuldlddrdrururuuldr

fS(x) = −9
t = 19 seconds

Where the optimal folding would have fitness -10.

3. The best found folding for the third protein sequence, is:

S = ppphhpphhppppphhhhhhhpphhpppphhpphpp

x = rrdlldrrrrdddllurullldrdlldrrrdrurru

fS(x) = −13
t = 53 seconds
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Where the optimal folding would have fitness -14.

4. The best found folding for the fourth protein sequence, is:

S = hhphphphphhhhphppphppphpppphppphppphphhhhphphphphh

x = rdlluururdrurdrdllddllldllldluullururdrdruruulldru

fS(x) = −20
t = 99 seconds

Where the optimal folding would have fitness -21.

5. The best found folding for the fifth protein sequence, is:

S = hhhhhhhhhhhhphphpphhpphhpphpphhpphhpphpphhpphhpphphphhhhhhhhhhhh

x = rdlluurrrdddlllluuuurrrurdrrrrurdrrdlddlddluldluluuurrrrdllldrru

fS(x) = −34
t = 155 seconds

Where the optimal folding would have fitness -42.

Which is slightly worse than the GA in [1].
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