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1 Introduction

The purpose of this report is to verify attendance of the author to the Algo-
rithms in BioInformatics course part II, at the department of computer science,
University of Aarhus. The reader is assumed to be familiar with the problem
description as well as the course litterature.

Following an outline of the problem that is to be solved, the solutions and
their algorithms are described along with their implementations, after which
experiments are conducted.

2 Tree Distance

Consider two unrooted trees T and S which have the same leafs but different
topologies (that is, the trees have different inner nodes and connections amongst
them). Assume the degree of each inner node is 3 or more, so that edges can
not be prolonged with intermediate edges and nodes, more than what is needed
in order to connect all of the leafs. This is not an essential assumption, and
the methods described below, will work even though this is not the case. The
assumption merely makes it easier to evaluate running time in terms of the
number of nodes instead of the number of edges. Note also that leafs are unique
within a single tree.

A distance measure between two such trees, is a metric allowing us to define
and compare their similarity. However, not all valid metrics are useful, in that
trees appearing to be quite similar, may exhibit maximum distance with some
metrics.

2.1 Symmetric Distance

The symmetric distance is described in [1] and is easily understood, by consid-
ering all partitions of the leafs in the two trees T and S, and then counting
the ones that are unique – unique in the sense that they do not appear in the
other tree. Note that two trees with a different number of leafs, will result in
all partitions being unique. Also note that partitioning a tree so that it has one
leaf in one partition, and the rest of the leafs in the other, is clearly not unique,
as the exact same partitioning must exist in the other tree. However, this is not
used in the present implementation.

As each leaf only occurs once within a tree (or more specifically, the species
designated by a leaf, occurs only once within a single tree), then a partition of
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the leafs into two disjoint sets, is uniquely defined by one of the edges in the
tree. Assume now that the two trees have only directional edges. That is, for
two nodes u and v in T , if they are connected by an edge eu,v from u to v, then
they are also connected by another edge ev,u from v to u.

Then define k(e(u,v), f(u′,v′)) to be the number of common leafs, between
the subtree of T rooted in node v and excluding the edge eu,v (and hence the
subtree rooted in node u), and the subtree of S that is rooted in v′ and excludes
the edge fu′,v′ .

Assume that all such k’s have been computed, then the symmetric distance
(that is, the number of unique partitions in either of the trees), is a count over
the k’s, in which the distance d is initialized to zero, and then for each edge
eu,v in T , d is incremented by one if k(e(u,v), f(u′,v′))+k(e(v,u), f(v′,u′)) does not
equal L (the number of leafs in a single tree), for each edge fu′,v′ in S. And
likewise for each edge fu′,v′ in S, d is incremented by one if k(e(u,v), f(u′,v′)) +
k(e(v,u), f(v′,u′)) does not equal L for each edge e(u,v) in T . Since this procedure
counts each unique partition twice (both e(u,v) and e(v,u) are counted, and the
same for edges in S), we must finally divide d by 2.

2.1.1 Computing k With Dynamic Programming

Clearly k is a table of size N ·M with N being the number of edges in T and M
the number of edges in S. If we start by computing the values that are easily
determined, then we may be able to find recursions that will build the rest of
the table in time O(N · M).

If we let l be some leaf in T and l′ a leaf in S, then k(e(u,l), f(u′,l′)) is 1 if
l = l′ (that is, if the two species designated by nodes l and l′ are the same). On
the other hand, if they are different, then set this value for k to zero.

Let k be shorthand for k(e(u,l), f(u′,l′)), then it immediately follows that we
may also set:

k(e(l,u), f(l′,u′)) = L − 1 − (1 − k)
k(e(l,u), f(u′,l′)) = 1 − k

k(e(u,l), f(l′,u′)) = 1 − k

where L is still the number of leafs in a tree.
Now to the rest of the k-table, where the idea is to use recursive traversal.

That is, if we are to find the value k(e(u,v), f(u′,v′)) and it has not already been
computed, then if v is not a leaf, find all the edges ev,x such that x 6= u and let
k(e(u,v), f(u′,v′)) be the sum:

k(e(u,v), f(u′,v′)) =
∑

e(v,x), x 6=u

k(e(v,x), f(u′,v′))

If on the other hand v was a leaf, then recurse through the S-tree instead:

k(e(u,v), f(u′,v′)) =
∑

f(v′,x), x 6=u′

k(e(u,v), f(v′,x))
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At some point recursion will end, because when v is a leaf we will start traversing
S, and eventually reach a set of edges for which k has already been calculated,
either by previous recursions or during initialization. As each entry in the k-
table is only traversed once, and it takes O(1) time to compute a k-value from
the k-values of its children nodes, then the total running time is O(N ·M) – or
as we have assumed that inner nodes have a degree of at least 3, then N and
M are bounded by (a factor of)1 the number of leafs L, so we have O(L2).

2.2 Quartet Distance

Let eu,v be an edge in T that divides its leafs into two disjoint sets A and B,
and the edge fu′,v′ in S does the same in S, but for the sets A′ and B′. Any two
distinct leafs ai and aj from A, combined with any two distinct leafs bi and bj

from B, form a socalled quartet aiaj |bibj . The objective of the quartet distance,
is then to count the number of unique quartets in the trees T and S, that is,
the number of quartets that do not appear in the other tree.

The quartet distance is described in [1] and an O(L2) algorithm is briefly
discussed in [2], while a more elaborate description of that algorithm exists in
[3, Chapter 3]. To use the notation of the latter, we wish to compute the quartet
distance dQ given by:

dQ(T, S) = |QT | + |QS | − 2 · |QT ∩ QS |

Which is similar to the (unwritten) formula for the symmetric distance, in that
we take the total number of quartets in both trees, and subtract those that they
have in common. As the ones that are common of course occur in both trees,
both occurences must be subtracted from the distance count. This leaves us
with the number of unique quartets in either of the trees.

The approach discussed here, is somewhat similar to the computation of the
symmetric distance above. Let the edges eu,v from T and fu′,v′ from S split
those two trees in the sets of leafs A, B, A′, and B′ as described above. First
define a count for each edge in a tree, which gives the number of leafs in its
subtree, and denote the count by:

cT (eu,v)

That is, the number of leafs in the subtree rooted in node v, and arising from the
removal of edge eu,v in tree T . Clearly this count may be computed recursively,
by setting cT (eu,l) = 1 for all leafs l, and recursively computed for the internal
nodes as follows:

cT (eu,v) =
∑

e(v,x), x 6=u

cT (e(v,x))

1To be more precise, if each inner node has degree 3, then the first three leafs means there
is one inner node and hence three edges. For each additional leaf, the number of internal
nodes is incremented by one, and the number of edges by two. Hence, there is (|L| − 3) · 2 + 3
edges in total.
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Now the number of pairs aiaj with ai and aj from A (that is, the subtree in T
induced by edge eu,v), that do not exist in A′ (that is, the subtree in S induced
by edge fu′,v′), must be:

αT (e(u,v), f(u′,v′)) = cT (eu,v) · (cT (eu,v) − 1 − k(e(u,v), f(u′,v′)))

as each uniquely appearing leaf in A, can be paired with any one of the other
leafs in A, to form a pair that does not exist in A′ from the other tree S.
Similarly we may take:

αS(e(u,v), f(u′,v′)) = cS(fu′,v′) · (cS(eu′,v′) − 1 − k(e(u,v), f(u′,v′)))

as the number of pairs that occur in A′ but not in A. The number of unique
quartets from T in this regard, is then:

βT (e(u,v), f(u′,v′)) = αT (e(u,v), f(u′,v′)) · cT (ev,u) · (cT (ev,u) − 1)

and similarly for tree S and αS :

βS(e(u,v), f(u′,v′)) = αS(e(u,v), f(u′,v′)) · cS(fv′,u′) · (cS(ev′,u′) − 1)

The sum of these two is the number of unique quartets in A|B compared to
A′|B′, and is denoted:

γ(e(u,v), f(u′,v′)) = βT (e(u,v), f(u′,v′)) + βS(e(u,v), f(u′,v′))

which is a table similar to the k-table, and naturally also computable in O(L2)
time.

The question is then, how many unique quartets does an edge eu,v in T
induce altogether, and not just in regards to a single edge fu′,v′ in S. First off
we should select the minimum γ from the possible combinations of edges from
S:

min
f(u′,v′)∈S

γ(e(u,v), f(u′,v′))

because we must use the combination of edges which yields the fewest unique
quartets, so a quartet that is in fact not unique, does not get counted as being
unique. The same is done for the edges in S, as follows:

min
e(u,v)∈T

γ(e(u,v), f(u′,v′))

Which is the number of unique quartets that each edge in T and S contribute.
Alas, in contrast to the symmetric distance, some of the edge-induced partitions
of the leafs, will cause some quartets to be counted more than once, if they occur
in the sub-trees of several different edges.

Weeding out the redundant counts of quartets can be done by preprocessing
of the trees. A quite elaborate method is given in [3], and since it is limited
to internal nodes of degree tree, we need an even more elaborate method for
the present exposition, as we do not have such a limitation. The general idea
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however, is to recursively let edges claim quartets in their subtrees, and then by
appropriate set intersections (see [3, Table 3.1] for the degree 3 case) combine the
results of their children-nodes. Since each quartet can only be claimed by one
edge, then each unique quartet will only be counted once. Since a fixed amount
of time is needed for each edge, and the set of claimed quartets is computed
only once per edge, then this can be achieved within the quadratic time bounds.

3 Implementation

Implementation is carried out in MS Visual C++ .NET and compiles to an MS
Windows executable, with the entry-point located in the file bioinf distance.cpp.

The class LSpeciesTree holds a species-tree (i.e. an object is instantiated
for T , and another for S), and provides a number of functions to build the tree
as well as accessing nodes and edges. The class LTreeDistance was thought as
a base-class for computing in kind of distance between two evolutionary trees,
but here it implements the symmetric distance. Its function GetDistance() is
recursive and calls the GetDistanceSum() function in a LSpeciesTree-object,
which then calls back into the LTreeDistance-object as needed. This mutual
recursiveness and keeping track of which tree is being recursed, could be avoided
by implementing the trees directly in LTreeDistance.

3.1 Tree Builder

The Newick-parser is taken from [4] and modified. First off, the file lexer.cc
needed the following outcommenting and definition:

//#include <unistd.h>
#define YY_NEVER_INTERACTIVE 1

and parser.cc in the line:

extern const char *yytext;

had to have the const keyword removed, for it to be able to link the code.
Apart from this, those two files are unchanged.

As the internal representation of trees in LSpeciesTree is based on integer-
id’s for nodes and edges, and pointers to the node- and edge-objects are never
used outside the LSpeciesTree-class, the class TreeBuilder had to be rewritten
to support this. The subclass of TreeBuilder for building an LSpeciesTree-
object, is LSpeciesTreeBuilder which then implements the pure virtual func-
tions accordingly.

Naturally, LSpeciesTree could be rewritten to use pointers to node- and
edge-objects instead of integer id’s, which would probably simplify the source-
code a tad. The reason for using integer id’s was to be consistent with the
enumeration in the k-table.
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3.2 Testing

Testing was performed in steps during development. Although socalled as-
sertions were used to catch erroneous function-arguments and the like during
debugging, the main issue with the algorithm for computing the symmetric dis-
tance between two trees, lies in the recursion of the k-table. The call-stack
rapidly overflows if the algorithm does not terminate, but instead recurses in-
definitely. Testing was focused on the computation of the tree-distance, and the
Newick-parser was not explicitly tested.

To investigate errors in different phases of recursion, the example from [1,
Figure 30.7, p. 529] was used, and GetDistance() was called with specific edges
as parameters. As this was before the Newick-parser had been added, the trees
had to be written in hand as follows. First the leafs are added, with the id’s
being identical for the two trees:

LSpeciesTree T, S; // The two trees from figure 30.7
int u, v; // Temporary nodes.

for (int i=0; i<7; i++)
{

T.AddLeaf(i);
S.AddLeaf(i);

}

Then tree T is built as follows:

u = T.AddNode(0);
v = T.AddNode(u);
T.AddEdges(v, 3);
T.AddEdges(v, 5);
u = T.AddNode(u);
v = T.AddNode(u);
T.AddEdges(v, 4);
T.AddEdges(v, 6);
u = T.AddNode(u);
T.AddEdges(u, 1);
T.AddEdges(u, 2);

And the tree S is built by the following:

u = S.AddNode(0);
S.AddEdges(u, 3);
u = S.AddNode(u);
S.AddEdges(u, 5);
u = S.AddNode(u);
S.AddEdges(u, 4);
S.AddEdges(u, 6);
u = S.AddNode(u);
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S.AddEdges(u, 1);
S.AddEdges(u, 2);

After all errors had been resolved, the result of computing the symmetric dis-
tance for these trees and with this implementation, was 3 as expected.

Another test-example with only four leafs, two internal nodes, and 5 edges,
was built as follows:

u = T.AddNode(0);
T.AddEdges(u, 1);
u = T.AddNode(u);
T.AddEdges(u, 2);
T.AddEdges(u, 3);

for the T -tree. And for the S-tree:

u = S.AddNode(0);
S.AddEdges(u, 1);
u = S.AddNode(u);
S.AddEdges(u, 2);
S.AddEdges(u, 3);

4 Experimental Results

The project description calls for experiments with Newick trees from the first
mandatory project (on neighbour joining). It is thereby assumed that two im-
plementations were made, one naive and one efficient, which were again assumed
to result in different output, given the same similarity-matrix for a set of species.
However, only one algorithm was implemented by this author, because it merely
made use of clever data-structures to improve time-performance, and so, even
if the naive implementation had been made, the output of the two would have
been identical.

Having been unable to find other Newick-formatted trees, these experiments
will have to be conducted with artificial data. To validate the correctness of the
implementation, this is perhaps even better than real data, but to be able to
evaluate whether the symmetric distance measure performs according to expec-
tations, we would of course need real data.

The first pair of trees are written in Newick format as follows:

(a, (b, (c, (d, (e, f)))));

and by interchanging b and c we get:

(a, (c, (b, (d, (e, f)))));

for which the expected symmetric distance is clearly 2, which is also reported
by the implemented program.

Now we three Newick formatted trees, let us call them T1, T2, and T3, defined
in that order as follows:
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(a, (b, (c, (d, (e, (f, (g, (h, (i, j)))))))));

and T2 being the interchange of b and c as above:

(a, (c, (b, (d, (e, (f, (g, (h, (i, j)))))))));

and T3 having several changes:

(a, (c, (d, (b, (e, (h, (g, (i, (f, j)))))))));

Clearly the symmetric distance between T1 and T2 is 2 again, as the first two
leafs are merely interchanged. This distance is also reported by the program.
The distance between T1 and T3 can be easily counted after drawing the trees
by hand, and is found to be 10. The distance between T2 and T3 is found the
same way, and is 8 – both of which correspond with the output of the program.

As the above trees are as linear as possible, let us try comparing the first
tree which was given above as:

(a, (b, (c, (d, (e, f)))));

with a star-like tree-topology:

((a,b), ((c,d), (e,f)));

The first tree has a unique partition given by abc|def, and the second star-like
tree has a unique partition given by abfe|cd. That is, we expect the output of
the program to be a symmetric distance of 2, which is indeed the case.

Trying the same thing with T1, we may obtain the following tree T4:

((((a,b), (c,d)), (e,f)), ((g, h), (i, j)));

where a drawing of the two trees, reveals the symmetric distance between T1

and T4 to be 6, which is also the output of the program.
Curiously a typo had first snuck in, so the expression was written as ..

(e,f))), .., and was therefore being parsed wrong. However, no exception
was raised, nor was any error-message printed. Debugging the session revealed
that there were 10 leafs in each of the trees, so the parser had seemingly not cut
off any of the leafs. The parser however, did not raise a Parser::ParseError
exception even though the parentheses were unbalanced.2

2Naturally, this is not critical in this application, as it is merely meant to demonstrate the
algorithm for the symmetric distance, and the rest of the program is also not safe-guarded
with consistent exception-handling.

8



References

[1] J. Felsenstein. Inferring Phylogenies, Sinauer Associates, 2004

[2] D. Bryant, J. Tsang, P.E. Kearney, and M. Li. Computing the
quartet distance between evolutionary trees. Proceedings of the
11th Symposium on Discrete Algorithms (SODA), pp. 285-286,
2000.

[3] John Tsang. An Approximation Algorithm for Character Com-
patibility and Fast Quartet-based Phylogenetic Tree Comparison.
M.Sc. Thesis. University of Waterloo, Ontario, Canada, 2000.

[4] Thomas Mailund, Christian Storm. QDist version 1.0.3, http:
//www.birc.dk/Software/QDist/index.html

9


