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1 Introduction

The purpose of this document is to verify attendance of the author to the Data

Mining course at DAIMI, University of Aarhus.
Following an introduction of the Hidden Markov Model, its training is de-

scribed in terms of multi-agent optimization and the related implications are
solved.

Rabiner’s article [1] is used throughout without explicit citation. The reader
is assumed to be familiar with basic probability theory, state-machines, meta-
heuristical optimization, and related topics.

2 Hidden Markov Model

A Hidden Markov Model (HMM) can be considered a state-based machine in
which the transitions between states occur probabilistically. Then, for each state
the machine is in, a value from a discrete and finite set is output also according
to a probability.

The transition and output probabilities of the HMM are then trained to
mimic a given observation sequence so that the HMM may be used to classify
or synthesize similar sequences, or the HMM may be used to predict likely values
for future or unseen data.

2.1 Notation

The states of the HMM are denoted S = {S1, · · · , SN}, and the probability of
transition from state i to state j is denoted aij . The probability of the machine
being in state i upon initialization is πi, and the state the machine is in at time
t is denoted qt. So the transition probability may be written as:

aij = P [qt = Sj |qt−1 = Si] (1)

and the probability for the initial state being i can be written as:

πi = P [q1 = Si]

For first order HMMs, the transition probabilities only depend on the current
state of the machine:

aij = P [qt+1 = Sj |qt = Si] = P [qt+1 = Sj |qt = Si, qt−1 = Sk, · · ·]
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When the socalled output alphabet V = {v1, · · · , vM} is discrete and finite,
the probability for outputting the character vk ∈ V when the machine is in
state j, is given by bj(k). The output sequence is denoted O = O1 O2 · · ·OT ,
consisting of T individual observations. Thus the probability of outputting
character vk may be written as:

bj(k) = P [Ot = vk|qt = Sj ] (2)

Note that this probability is independent of the time-step t.
The model can then be summarized as λ = (A, B, π), where A = {aij},

B = {bj(k)}, and π = {πi}. Hence, A and B can be thought of as matrices,
and π as an array.

2.2 Topology and Constraints

When any state can be reached from any other state in a single step, that is:
aij > 0, the model is said to be ergodic. Another possibility is left-right in which
transitions to previously visited states are disallowed: i > j ⇒ aij = 0. Note
that transitions to the same state are still allowed though, and the length of the
output can therefore still be greater than the number of states, if so desired.

We always assume that the probabilities are in the range [0, 1] and are mu-
tually consistent:

• Exactly one initial state is chosen:

N
∑

i=1

πi = 1 (3)

• Exactly one transition will occur from each state i:

N
∑

j=1

aij = 1 (4)

• Exactly one character will be output each time the machine is in any given
state j:

∑

k∈V

bj(k) = 1 (5)

2.3 Probabilistic Synthesis

Synthesizing observation sequences with a probabilistic model based on analysis
of real data, has the advantage that plausible but seemingly unique data can be
produced without detailed knowledge of the particular domain.

For example, in a computer game where the player may be situated in many
different worldly locations, the weather can be simulated by such a model trained
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with data for each location. A manual implementation would require consid-
erably more effort on behalf of the developer, both in regards to analysis of
weather data, but also transforming this into sensible if-then-else statements
or similar programming paradigms.

It is naturally assumed that the underlying process of the physical system is
indeed probabilistic in the HMM fashion. This means that we should generally
not expect HMM’s to recognize or generate highly ordered (e.g. long-periodic)
sequences with great accuracy. Hidden Markov Models are therefore perhaps
best used in classification tasks where we merely need to determine if one model
is better than another at recognizing the sequence to be classified - but where
the probability of the HMM generating that exact sequence is actually very low.

2.4 Synthesis Algorithm

Once the model λ exists however, synthesizing an observation sequence O of
length T , is done by traversing the states as one would do in any state-based
machine - only the transitions aswell as the choice of output are of course prob-
abilistic. The algorithm is as follows:

• The iterative state variable q is initialized according to the probability
distribution π. The counter t is also initialized (t := 1), and the following
is repeated until the entire sequence has been generated (t = T ).

– Select a character v ∈ V according to the probabilities bq(k). This is
the output for the current time-step: Ot = v.

– Select a new state q′ according to the probabilities aqj , and update
the iterative state variable: q ← q′.

– Update the counter t← t + 1.

Selecting one of N available states can be implemented with socalled roulette

wheel selection [2], in which each state would be assigned a slice on a roulette
wheel of size according to its probability, a random number is then drawn to
choose amongst these, simulating a spin of the wheel.

3 HMM Training

We need to determine the parameters λ - and implicitly the number of states
N - that maximize the likelihood of observing the training sequence O:

P = P [O|λ]

Again, let the sequence contain the individual observations O = O1 · · ·OT and
assume that the HMM is ergodic, then the probability P is the sum over the
probabilities of outputting O through all possible state sequences of length T .
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The probability of outputting O over a given state sequence q1 q2 · · · qT , is simply
their product because their probabilities are independent, hence:

P [O|λ] =
∑

q1,···,qT ∈S

πq1
bq1

(O1) · aq1q2
bq2

(O2) · · · aqT−1qT
bqT

(OT )

Calculating this directly however, yields exponential time-complexity and a
faster algorithm is thus needed.

3.1 Forward Procedure

The probability P may be computed with polynomial (quadratic) time-complexity
by the following algorithm. First define the forward variable αt(i) that is the
probability for the given model λ to be in state i at time-step t, and having
observed the first part of the sequence O1 · · ·Ot:

αt(i) = P [O1 · · ·Ot, qt = Si|λ]

The algorithm is then:

• Initialization: Initially the machine may be in any one of the N states,
and may output O1 from any one of these. Since the probability of out-
putting the character is independent of being in that state, the probability
of both events occuring, is the product:

α1(i) = πi · bi(O1)

• Induction: Now calculate αt+1 from αt. The machine may go to state
j at time-step t + 1 from any one of the machine’s states. So we need
the probability for the machine to be in state j now, while having output
O1 · · ·Ot in the previous states. Since these state sequences are mutually
exclusive, the probability of either one of them occuring, is the sum of
their individual probabilities. This is then multiplied by the probability
of outputting Ot+1 from the current state j:

αt+1(j) =

(

N
∑

i=1

αt(i) · aij

)

bj(Ot+1)

• Termination: Since the machine may end up in any one (and only one) of
its states after T time-steps, the probability of having output the sequence
O is the sum over all of the forward variables for time-step T :

P [O|λ] =

N
∑

i=1

αT (i) (6)

The time-complexity of O(TN2) follows from noticing that the inductive
step is repeated O(T ) times, and uses O(N) operations for each state - of which
there are N .
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3.2 Scaled Forward Procedure

For each inductive step of the forward procedure, the forward variables will
become smaller as the probabilities they are multiplied with, are generally less
than 1. For practical use, the forward variables quickly underflow the dynamic
range of the floating point unit.

The following method preserves the relationship between the individual
probabilities for each time-step, and it can be thought of as stretching or dragging

the forward variables back towards 1 by multiplying all of them by a common
factor.

The inductive step in the algorithm of section 3.1 now uses the scaled

forward variable α̂t for the previous time-step t, to calculate the temporary

forward variable α̇t+1 for the current time-step t + 1:

α̇t+1(j) =

(

N
∑

i=1

α̂t(i) · aij

)

bj(Ot+1)

Where the scaled forward variable is defined as a scaling of the temporary
forward variable:

α̂t(i) = ct · α̇t(i) (7)

With the initial α̇ equalling that of the non-scaled procedure: α̇1(i) = α1(i).
The scale ct is common to all states, and defined as the reciprocal sum of all
α̇t(i) for the given time-step:

ct =
1

∑N

i=1 α̇t(i)

That is, the scaling factor ensures that all the α̂t(i)’s for the given time-step
add up to 1:

N
∑

j=1

α̂t(j) =

N
∑

j=1

(ct · αt(j)) = ct ·
N
∑

j=1

αt(j) =
1

∑N

i=1 αt(i)
·

N
∑

j=1

αt(j) = 1

The scaling factor ct can therefore be said to normalize the sum
∑N

i=1 αt(i),
thus ensuring that the individual α̂t(i)’s are kept within the proper dynamic
range, although some of them will naturally still approach zero.

The forward variable is scaled for each time-step, so the termination sum
∑N

i=1 α̂T (i) naturally also equals 1. However, writing out this sum, we see that
it is really just the sum of Eq.(6) multiplied by all of the scaling factors:

N
∑

i=1

α̂T (i) = · · · =
T
∏

t=1

ct ·
N
∑

i=1

αT (i)

Again from Eq.(6), we have:

T
∏

t=1

ct ·
N
∑

i=1

αT (i) =
T
∏

t=1

ct · P [O|λ]
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And since this equals 1 and all ct are non-zero, it can be rewritten as:

P [O|λ] =
1

∏T

t=1 ct

Then taking the logarithm on both sides, and applying its appropriate mathe-
matical laws, we get:

log (P [O|λ]) = −
T
∑

t=1

log(ct)

For convenience we denote this as log(P ).
So we can calculate the logarithmic probability log(P ) of observing the se-

quence O given the model λ, when using the scaled forward procedure. Fortu-
nately this can still be used in direct comparison of how well one model performs
over another, since the logarithm preserves order:

a > b > 0

m

log(a) > log(b)

3.3 Number of States

In general one does not know the number of states of the stochastic system
generating the training sequence O. Therefore we either need to decide the
number of states, or devise a method to find it automatically.

Imagine the HMM has only a single state. If it is trained to comply optimally
with the sequence O, the probability of that state outputting a character, is
simply the number of times it occurs in O divided by the total number of
observations T . That is, the sequential tendencies or patterns of O are not
modelled in the single state HMM at all.

The other extreme is one in which there is a single state for each observation:
N = T . For this HMM to comply optimally with O, there would only be one
possible state sequence, with each state outputting only the correct character
for that time-step.

This is known as memorizing and is the extremity of overfitting the model
to the training set. The single state HMM then corresponds to underfitting [2].

One suggestion of algorithmically finding the number of states, would be
to try various values of N . First choose some boundaries Nmin and Nmax to
avoid gross under- and over-fitting. Then for example, iteratively bisect that
range, calculate P for one value in each of these half-ranges and adjust the
boundaries to the half-range that had the highest P . When Nmin = Nmax this
is hopefully1 a sensible choice of N .

Of course, when using non-exhaustive search for N , one should always re-
member the one that maximized P so far, and not expect it to be the last
number found by the search algorithm.

1Meaning that no experiments are carried out to validate this, and that some regularity

on the relationship between number of states and P is needed for this to work.
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3.4 Training- And Test-Sets

Traditionally in the training of data mining models, the data-set is split into two
mutually exclusive training- and test-sets. The purpose is to avoid overfitting
when continuously refining the model to match the training-set, but use the
model that performed best on the test-set.

Since the degree of fitting in the HMM may be controlled by the num-
ber of states, it appears there is no need for such precautions. Nevertheless if
there are several sequences available for the training, as is the case with speech-
recognition, in which several persons have recorded their voice to train the HMM
to recognize the words and not the particular sonic features of a single person’s
voice. Then the HMM may be trained continuously on a subset, the training-
set, of all these recordings - meanwhile evaluating the HMM’s performance on
the other recordings, and then picking the model parameters λ that maximize
performance on this test-set.

3.5 Meta-Heuristical Optimization of P [O|λ]

The number of probability values that define an ergodic model λ for a discrete
alphabet V of size M , is:

|A|+ |B|+ |π| = N2 + NM + N = N(N + M + 1)

with each probability belonging to [0, 1] ⊂ R. Hence, the problem of maxi-
mizing P can be formulated as an optimization problem over the real-valued
search-space [0, 1]N(N+M+1), and is therefore applicable to optimization by Ge-

netic Algorithms [2] or other meta-heuristical optimization schemes, with each
agent representing a model λi, and the fitness to be maximized being P (or
equivalently log(P )).

To optimize the HMM parameters, this implementation uses the acPSO [3]
which is a variation of the Particle Swarm Optimization (PSO) scheme.

3.5.1 Normalizing Probabilities

This way of meta-heuristically updating the probabilities, generally does not
preserve the consistencies required by Eqs.(3,4,5). One solution is to normal-
ize the individual probabilities similarly to the forward variable scaling of sec-
tion 3.2.

Assuming that the sum of the probabilities is non-zero, they can be normal-
ized as in the following example where π̂i denotes the normalized initial state
probability πi for the machine to start in state i:

π̂i =
πi

∑N

j=1 πj

And similar normalization is done for the transition and character output prob-
abilities of Eqs.(1,2).
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3.5.2 Pre-Emptive Fitness Evaluation

If the exact fitness of the agent is only needed in case of improvement over its
own or the entire population’s previous best fitness, the fitness evaluation may
be aborted pre-emptively in the training of the HMM once it becomes worse.

This works because the probability for observing longer sequences is a non-
increasing function - that is:

P [O1 · · ·Ot|λ] ≥ P [O1 · · ·Ot Ot+1|λ]

So for the acPSO where a particle only uses its own as well as the swarm’s previ-
ous best ~gbest, if for some t we find that P [O1 · · ·Ot|λ] (or log(P [O1 · · ·Ot, |λ])
is less than the particle’s own previous best, we stop calculating any further as
the HMM model is not any better than what the particle has previously seen,
and will therefore not cause any change to the swarm’s behaviour.

Although this trick was devised for this particular application of the acPSO,
it is generally applicable if the optimization scheme and the fitness evaluation
allow it.

4 Implementation

Implementation is done in Microsoft Visual .NET C++ and the source-code and
Windows-executable can be found on http://www.daimi.au.dk/~u971055/un-
der the filenames hmm*.*. There is no explicit error-handling.

The ergodic HMM is implemented in the HMM-class, which is then derived
and implemented for integer-valued sequences in IntegerHMM, supporting ob-
servations from discrete and finite alphabets V .

The HMM-class derives from LVectorNDim which is the class representing a
position in the real-valued search-space, and the model parameters λ are stored
using methods of this class.

Since the acPSO was readily available for minimization problems, the fitness
of the particles are merely taken to be Fitness(λ) = −log(P [O|λ]) ∈ [0, inf).

The executable file has a hard-coded seed for the random generator, but the
user decides most other parameters: Number of states and characters, input-
and output-sequence lengths, the swarm-velocity factor (so that particles are
limitied in their movements across the search-space in a single step), the number
of swarm-iterations, and number of swarm runs.

Because no real-world sequences were available, the implementation is tested
with an artificially constructed observation sequence:

Ot = (t mod m) mod M (8)

where the user inputs the modulo-value m. The output is then synthesized with
the best model λ found over all of the acPSO runs.
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5 Experimental Results

As this work is of an experimental nature, the reader is also encouraged to run
the program with different parameters. The following provides an example of
such a run. The parameters for the acPSO are deliberately chosen to be the
same as in [3], but with the velocity factor decided by the user.

The effect of pre-emptive fitness evaluation is most evident with a high
number of analysis observations, so that the fitness-track is displayed slowly.
Then after the swarm disperses (happens for every 40.000 swarm-steps), the
fitness track is displayed more quickly until the particles start to converge on

~gbest, and the forward procedure again needs to be calculated for almost the
entire observation sequence.

Figure 1 displays the 100-character long analysis sequence generated from
Eq.(8) using a 4-character alphabet (e.g a numeration of the DNA-characters:
{A, C, T, G}), and the modulo-value m = 7.

0 1 2 3 0 1 2 0 1 2 3 0 1 2 0 1 2 3 0 1 2 0 1 2 3 0 1 2 0 1 2 3 0 1 2 0 1 2 3 0 1 2
0 1 2 3 0 1 2 0 1 2 3 0 1 2 0 1 2 3 0 1 2 0 1 2 3 0 1 2 0 1 2 3 0 1 2 0 1 2 3 0 1 2
0 1 2 3 0 1 2 0 1 2 3 0 1 2 0 1

Figure 1: The 100-character long sequence generated from Eq.(8) with m = 7
and M = 4, used in the training of a HMM using acPSO.

This is then analyzed by HMM’s having 5 states, with the acPSO having a
velocity factor of 0.01 and doing 1000 iterations for each of 50 runs, and then
using the best fitting HMM to synthesize the 200-character long output sequence
in figure 2. Its best fitness was log(P ) = −19.41 which is obtained in about half
of the runs and corresponds to a probability of P = 3.72e− 9.

0 1 2 0 1 2 3 0 1 2 0 1 2 0 1 2 3 0 1 2 3 0 1 2 0 1 2 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2
3 0 1 2 0 1 2 3 0 1 2 3 0 1 2 0 1 2 3 0 1 2 3 0 1 2 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
0 1 2 3 0 1 2 0 1 2 0 1 2 3 0 1 2 0 1 2 3 0 1 2 3 0 1 2 0 1 2 3 0 1 2 3 0 1 2 3 0 1
2 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 0 1 2 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2
0 1 2 0 1 2 3 0 1 2 3 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 3 0 1

Figure 2: The 200-character long sequence generated from the 5 state HMM
trained with acPSO optimization to mimic the sequence of figure 1.

If all probabilities in the HMM were equal - which corresponds to a single-
state HMM with all output probabilities being equal - the probability for out-
putting a given sequence is M−N , meaning 0.25−100 (or the log-likelihood of
this, approximately −138) for these parameters. So, the acPSO finds signifi-
cantly better HMM probabilites for this, albeit artificial, example. This is also
underlined by the random sampling in the acPSO initialization, which does not
get better than roughly log(P ) = −130.

Preliminary experiments indicate that the acPSO is not always capable of
finding known optimal HMM parameters. For example, if the period of the
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test sequence is four (set m to be a non-zero multiple of four), and the HMM
has four states, then the acPSO optimization does not always find the HMM
that produces this periodical sequence. It appears that training the HMM with
acPSO is susceptible to too many observations.

It further seems that too many states may also degrade the results. For
example, the sequence in figure 1 does not always result in a perfectly trained
HMM when it has 20 states. This may be a result of the acPSO not performing
well on that many dimensions (500 in this case).

Some would argue though, that the probabilities should not be allowed to
be 0 nor 1, e.g. πi ∈ (0, 1) instead of the usual πi ∈ [0, 1]. A probability of zero
or one means the behaviour is deterministic, but the physical system is assumed
to be stochastic.

6 Conclusion

Although this document primarily describes the implications of multi-agent op-
timization of the HMM parameters λ, it would be interesting to compare its
performance on real-world data with the traditional, but also iterative, Baum-

Welch Reestimation algorithm. Experiments with other multi-agent optimiza-
tion schemes and their parameters, could also prove interesting.

Furthermore, a method for pre-emptively aborting fitness calculations in
particular kinds of multi-agent optimization was outlined and then adopted in
the optimization of the probability log(P [O|λ]) of observing the sequence O

given the Hidden Markov Model parameters λ.
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