
ArrayOps

C++ Vector Computation

Manual

Magnus Erik Hvass Pedersen

May 19, 2006

i

ArrayOps C++ Vector Computation Source-Code Library.
The Manual, Second Edition by Magnus Erik Hvass Pedersen.

Copyright c©2006, all rights reserved by the author.
Printing & distribution for personal and academic use allowed.

Commercial use requires written consent from the author.
Please see section 1.5.2 on page 8 for license details.

Contents

Contents ii

Preface v

1 Introduction 1
1.1 Overview . 1
1.2 Motivation . 1
1.3 Modern Implementations . 2

1.3.1 Existing Libraries . 2
1.4 The ArrayOps Library . 3

1.4.1 Terminology & Notation 4
1.4.2 Principles . 4
1.4.3 Flattened Loops . 5
1.4.4 Template Meta-Programming 5
1.4.5 Reverse Inheritance . 5
1.4.6 Macros . 6
1.4.7 Optimizations . 6
1.4.8 Testing . 7

1.5 License . 7
1.5.1 Source-Code License . 7
1.5.2 Manual License . 8

1.6 Contact . 8

2 Reference Manual 9
2.1 Introduction . 9
2.2 Installation . 9

2.2.1 Including Just Header-Files 9
2.3 Array Types . 9

2.3.1 ArrayBase . 10
2.3.2 Array . 10
2.3.3 ArrayMini . 11
2.3.4 ArrayUse . 11
2.3.5 ArrayAuto . 12
2.3.6 Accessing Array Elements 13

ii

CONTENTS iii

2.3.7 Checked Access . 14
2.4 Index Manipulators . 15

2.4.1 Slice . 15
2.4.2 Cycle . 16
2.4.3 Reverse . 17
2.4.4 Nesting . 18

2.5 Operators . 19
2.5.1 Arithmetic Operators . 19
2.5.2 Bitwise Operators . 20
2.5.3 Logical Operators . 20
2.5.4 Assignment Operators . 20

2.6 Functions . 23
2.6.1 Mathematical Functions 23
2.6.2 Power Functions . 24
2.6.3 Size . 25
2.6.4 Eval . 25
2.6.5 Casting . 27
2.6.6 ReduceAll . 28

2.7 Reductions . 31
2.7.1 Sum . 31
2.7.2 Product . 32
2.7.3 Mean . 32
2.7.4 Norm . 33
2.7.5 Variance . 34

2.8 Semantics . 34
2.8.1 Implicit Resizing . 34
2.8.2 Strong-Typed . 35
2.8.3 Size-Matching . 35
2.8.4 Constness . 35
2.8.5 Assertions . 36
2.8.6 Exceptions . 36

2.9 Parallelism . 36
2.9.1 ArrayBase Support . 37
2.9.2 Cache Coherency . 38

3 Implementation 39
3.1 Techniques . 39

3.1.1 Template Classes . 39
3.1.2 Temporary Objects . 41
3.1.3 Meta-Programming . 42
3.1.4 Nested Meta-Programming 43
3.1.5 Reverse Inheritance . 44
3.1.6 Macros . 47

3.2 Framework . 47
3.2.1 Class Hierarchy . 47
3.2.2 Functors . 47

CONTENTS iv

3.2.3 Storage-Class . 47
3.2.4 Expr-Class . 49
3.2.5 Expr1-Class . 51
3.2.6 Expr2-Class . 53
3.2.7 Values & Variables . 55

3.3 Operators . 56
3.3.1 Unary Operator . 57
3.3.2 Binary Operator . 57

3.4 Functions . 60
3.4.1 Eval1 . 60
3.4.2 Casting . 63
3.4.3 EvalAll . 64
3.4.4 ReduceAll . 66

3.5 Reductions . 69
3.5.1 Reduce-Class . 69

3.6 Arrays . 70
3.6.1 Assignment . 70
3.6.2 ArrayBase-Class . 72
3.6.3 ArrayMini-Class . 75
3.6.4 ArrayAuto-Class . 77

3.7 Index Manipulators . 79
3.7.1 Slice . 79

3.8 Object Destruction . 81
3.8.1 Code Generation . 81
3.8.2 Implementor Class & Cleanup Code 82
3.8.3 Array-Class . 82

Bibliography 84

Index 85

CONTENTS v

Preface

My first need for vector computation in the C++ programming language, arose
years ago when I was working for a company making software-based audio syn-
thesizers. Since then, I have used vector computations in other contexts also,
but many of the semantic requirements for ArrayOps, were uncovered back then.

I am a strong believer in keeping things simple. In fact, I believe that if
something gets too complex, it is often because of lack of insight. I have tried
to keep the ArrayOps implementation as simple as currently possible (with the
limitations of C++ in mind), so as to easen maintenance of the source-code
library, and thus decrease the risk of bugs.

I also believe in cooperation, so should you find any bugs or have any sug-
gestions for improvements, you are strongly encouraged to share your findings,
and participate in the further development of ArrayOps — this also goes for the
manual you are now reading. Godspeed!

Magnus Pedersen, Copenhagen, March 2006

Chapter 1

Introduction

1.1 Overview

This manual describes the usage and implementation of the ArrayOps library
for performing vector computations in the C++ programming language. The
manual is divided into the following chapters:

• Chapter 1 first discusses the need for having such a library, and then
describes libraries that are similar to ArrayOps, giving reasons for when
and why ArrayOps may be useful. The key concepts of ArrayOps are
outlined, along with the syntactic and semantic principles of the library.
This chapter also has information about the license under which the library
and this manual are published, as well as information on where to find
updates to the library and manual, and how to contact the developers of
the library.

• Chapter 2 is a reference manual as well as a brief tutorial on the library’s
intended usage. This chapter should be sufficient for most users of the
ArrayOps library.

• Chapter 3 describes how the ArrayOps library is implemented, and how
to modify and extend the library. This chapter is probably only of interest
to more experienced users, and requires a good understanding of template
programming in the C++ language.

1.2 Motivation

The inventor of the C++ programming language, Bjarne Stroustrup, clearly ex-
pressed the need for supporting vector computations in C++, as follows [Strous-
trup, 1991, Section 22.4]:

Much numeric work relies on relatively simple single-dimensional
vectors of floating-point values. In particular, such vectors are well

1

CHAPTER 1. INTRODUCTION 2

supported by high-performance machine architectures, libraries rely-
ing on such vectors are in wide use, and very aggressive optimization
of code using such vectors is considered essential in many fields.

However, it was not until recently, that C++ had matured sufficiently to
facilitate efficient implementation of such numeric vectors. The original vector-
support in C++ (namely the socalled std::valarray-class), was grossly inef-
ficient, and in some cases even unusable, for example when implicit allocations
were not allowed.

Naturally, Stroustrup’s intention was for the std::valarray-class to be spe-
cialized for each machine architecture by the compiler implementors; but this
often did not happen.

1.3 Modern Implementations

With the advent of socalled meta-programming, it is possible for the compiler to
generate specialized code at compile-time. This is utilized by a number of source-
code libraries for a number of different things, including vector computations.

1.3.1 Existing Libraries

Many software developers will try and get you to use their libraries exclusively.
Naturally there is personal gratification in having other people benefit from
your hard work, but this kind of monopoly, runs the risk of stagnating the
development, of the very library that one is trying to promulgate.

To stress the fact that ArrayOps is not considered to be the be-all and end-all
of vector computation libraries, you are strongly encouraged to consider whether
some of the other vector computation libraries are more suitable for your needs:1

• Blitz++ [Veldhuizen] is a commonly known library, and its author is re-
ported as having been one of the pioneers in meta-programming for the
C++ programming language. Blitz++ supports multi-dimensional vec-
tors (which ArrayOps currently does not), and reportedly implements
different optimizations in its framework, including loop-unrolling. The
Blitz++ implementation appears vast and complicated, and moreover, is
not very well documented. Blitz++ has two datatypes, one for vectors of
arbitrary sizes, and one for vectors of smaller sizes which must be known
at compile-time. These may not be combined in a single arithmetic ex-
pression. Blitz++ also does a lot of checking and implicit resizing at
runtime.

• POOMA [Karmesin et al.] is similar to Blitz++, and also supports multi-
dimensional vectors. Its reference manual however, is much more thorough

1Please note that I am not an expert in any of these libraries, and this overview may not
be entirely correct. Feel free to inform me of any errors, or if you know of any other libraries
that should be added to this list.

CHAPTER 1. INTRODUCTION 3

than that of Blitz++. POOMA also supports distributed computation,
currently implemented using the socalled Message Passing Interface (MPI)
[committee]. The POOMA implementation is also very large and compli-
cated, and even appears to be using a proprietary programming language
of its own, to generate the many source-code files.

• SVMTL [Tisdale] is the Scalar, Vector, Matrix and Tensor class-library,
which does not appear to be using meta-programming at all. In fact, it
does not even appear to be using templates. In this regard, it is very
different from Blitz++, POOMA, and ArrayOps, and quite possibly suf-
fers from some of the same drawbacks as the std::valarray class. The
SVMTL library provides a multitude of types though, for instantiating
various kinds of mathematical objects (scalars, vectors, etc.), and with
elements of different datatypes (integers, floating points, and so on). Be-
cause SVMTL does not use templates and meta-programming, it may be
supported by a greater number of C++ compilers.

The reason why Blitz++ and POOMA are so complicated in their implemen-
tations when compared to ArrayOps, is probably that they do not use socalled
Reverse Inheritance (see section 1.4.5 or chapter 3), which greatly increases the
flexibility of the framework, and reduces the amount of nearly redundant code.

1.4 The ArrayOps Library

There are a number of justifications for making ArrayOps. For example in
regards to the implementations themselves, the other libraries are immensely
large and difficult to comprehend – probably also for their original developers.
This increases the maintenance difficulties, and hence the risk of bugs, and
also makes it practically impossible for someone else to correct and extend the
libraries.

In terms of practical usability, the other libraries also suffer in a number
of ways. Just take an obviously desirable feature, such as combining different
kinds of arrays in a single arithmetic expression, that is, combining arrays which
use different kinds of storage-mechanisms; which is supported directly by the
ArrayOps framework, and therefore works for your own array-implementations
as well, without you having to change the framework.

Also when it comes to the legal issues, you may find the other libraries
lacking. Usually they are published under the GNU General Public License,
which does not allow for you to link the source-code library into commercial
programs, and distribute those programs at a profit. ArrayOps was specifically
developed with this in mind, both in terms of features and the legal license.

The only real drawback of ArrayOps compared to those other libraries, is
that it currently does not support multi-dimensional arrays.

CHAPTER 1. INTRODUCTION 4

1.4.1 Terminology & Notation

For historic reasons, the valarray-class in C++, was called an array instead of
a vector (recall that a vector in C++, is a resizable datastructure for holding
elements of arbitrary type, whereas numeric vectors are often only practical
for holding numbers). This practice was adobted by similar numeric libraries,
and to keep things simple, ArrayOps uses the same terminology. So from here
on out, we shall use the word array instead of vector, even when speaking in
mathematical terms.

In regards to the source-code notation, a slightly different and more modern
approach has been chosen however, in that the names of classes and functions
always begin with a capital letter – unless there is some specific reason not to
do this. This notational style is believed to be more readable than the usual
old-school C++ style.

Also, you will often be able to read from the name of a class or a function,
how many arguments it takes. For example, the class for a unary expression is
named Expr1, and the class for a binary expression is named Expr2.

1.4.2 Principles

In the development of ArrayOps, it was the intention to keep the syntax and
semantics as close as possible to C++, while retaining a framework that was
simple and could (somewhat) easily be maintained and extended. Other than
that, the guiding principles in the design of ArrayOps, were as follows:

• No implicit allocations can take place, unless the user (that is, the ap-
plication programmer) explicitly allows for this to happen, by using a
specialized array-class for that purpose.

• No implicit initialization is performed, other than that performed by C++
itself (which is usually none, depending on the compiler and whether you
are compiling the program in debug- or release-mode).

• No side-effects are allowed in arithmetic expressions. This imposes some
unfortunate restrictions, but encourages a style of programming that is
easier to understand and maintain, and usually also implies fewer bugs.

• Array-sizes are only checked in debug-mode. When this checking is not
enough, you may wrap the ArrayOps code in exception-handling state-
ments by yourself, at a slight cost of execution speed.

• ArrayOps is strong-typed to eliminate unintentional degradations in nu-
meric precision.

In general, whenever there was a choice of making the semantics of ArrayOps
either loose or rigid, rigidity was chosen. Though often there was no choice, due
to the specific way the framework is implemented. This rigidity is believed
to strengthen the user’s programming style, thus causing fewer bugs – and
hopefully you will learn to live with the shortcomings.

CHAPTER 1. INTRODUCTION 5

1.4.3 Flattened Loops

The primary idea with ArrayOps, is to have the compiler automatically trans-
form arithmetic expressions involving numeric arrays, into flattened loops. Take
for example the expression:

A = r * B + s * C;

where A, B, and C are arrays of, say, integers, and r and s are some scalar
integer variables. To circumvent all the problems with std::valarray, we
would ultimately like the compiler to see this expression as a single flattened
loop, instead of valarray’s sequence of loops that compute intermediate values,
and hence requires temporary storage as well. That is, we would like for the
expression A = r * B + s * C; to compile into the following loop:

for (unsigned int i=0; i<A.Size(); i++)
{

A[i] = r * B[i] + s * C[i];
}

To do this, we must employ a number of advanced object-oriented programming
techniques, which will be briefly introduced next, and described more thoroughly
in chapter 3.

1.4.4 Template Meta-Programming

Recall that C++ supports template-classes and -functions, where some or all of
the datatypes may be provided as socalled template arguments. These template
arguments must be provided at compile-time, so the compiler can specialize
the source-code for that particular datatype. Furthermore, the C++ compiler
is sometimes able to deduce the template arguments for template functions,
according to the arguments passed to that function.

In template meta-programming we use this to have the compiler build spe-
cialized datastructures and functions for us, by combining simpler building-
blocks that we have provided, as well as directions on how to combine them.
This means the compiler is able to create specialized code that is inlined, and
should thus be more efficient than, say, virtual functions. The particulars of the
meta-programming framework in ArrayOps, are covered in chapter 3.

1.4.5 Reverse Inheritance

Another little trick that is employed by ArrayOps, and which allows us to im-
plement much less than would ordinarily be required, is socalled reverse inher-
itance. Once again we use template arguments to have the compiler specialize
the source-code during compilation, and the idea is basically to provide a class
as a template-argument to another class, and have the latter inherit from that
template-argument. It may sound a bit confusing, but is actually fairly simple,

CHAPTER 1. INTRODUCTION 6

although it naturally makes the source-code a bit harder to understand, than if
we had used regular C++ inheritance.

The benefit of using reverse inheritance, is that we can make specializations
of classes with inlined functions, and thus increase performance. If we were
to use virtual functions – which is the usual way of specialization in C++ –
we would experience a severe penalty in the performance of ArrayOps. So
reverse inheritance enables us to re-use the entire framework of ArrayOps for
different array-types, without any loss in performance; which again translates
into ArrayOps being much easier to maintain and extend.

1.4.6 Macros

Macros are not commonly used in C++, as they are very weak language con-
structs, that give rise to bugs that may be hard to locate. However, when used
sparingly inside a well-tested framework, they sometimes provide great reduc-
tions in the amount of (more or less) redundant source-code. This is exactly
what ArrayOps uses macros for, but the user is currently discouraged from using
these internal ArrayOps macros, as they are likely to change in the future.

1.4.7 Optimizations

ArrayOps does not provide any low-level optimizations, other than the flattening
of loops as described in section 1.4.3. That is, ArrayOps does not perform
socalled loop-unrolling, or anything like that.

The reason is that most modern C++ compilers do this already, and it would
be grossly redundant to support the very same features in ArrayOps, that you
may control via compiler flags and arguments. This would only have meant
a more complicated framework, and maybe even be counter-productive, in the
sense that the C++ compiler would have trouble figuring out what is going on,
and where it could apply its own optimizations.

In other words, optimization of the ArrayOps code, is left entirely up to
the C++ compiler. This also includes the use of socalled SIMD instructions,2

which are supported by some platforms and not others. It would be possi-
ble to implement support for SIMD instructions directly in ArrayOps, but it
gets increasingly difficult with all the index mapping features and so on (see
section 2.4).

SIMD optimizations are also beginning to appear as options in C++ compil-
ers, and it is therefore suggested, that you instead of making a single program
that automatically switches between SIMD and non-SIMD implementations,
simply compile a version of the program for each platform you wish to support,
then turn on all the platform-specific optimizations during each compilation,
and finally have your installation-program choose the correct version of the pro-
gram to install on a given machine.

2SIMD stands for Single-Instruction-Multiple-Data, and is a vector-processing computional
unit, that may perform the same operation on several pieces of data in a single go.

CHAPTER 1. INTRODUCTION 7

1.4.8 Testing

In my years of software development, I have many times experienced that joyous
but treacherous feeling over something finally being finished and working, just to
find a bug two seconds later. My attitude towards testing has therefore become,
that the software is only bug-free, until another bug is discovered. This should
not be taken as a sign of poor quality or pessimism, but rather as a sign of long
and bitter experience. I would think most experienced software developers have
gone through the same motions I have.

So to convince yourself that ArrayOps is working for the purpose that you
intend to use it for, I suggest you conduct two phases of testing. First comes the
testing of the basic ArrayOps features, to establish whether the library appears
to be working at all. I have provided a small test-program for this, and you
are most welcome to share any alterations you might have. Running the test-
program in debug-mode, the output should be manually scrutinized by yourself,
step by step. Make sure to save the output, which you should also compare to
the test-program’s output when compiled and run in release-mode.

After having convinced yourself that ArrayOps seems to be fairly soundly
implemented, you should test it in your own application. Once again, I suggest
that you first test your program in debug-mode (which enables a lot of testing
in the ArrayOps source-code itself), and after that, test the program in release-
mode. After a sufficient amount of testing, you may conclude that your program
appears to be working as expected. But remember that the objective of testing
is not to prove that your program is working or is bug-free; the objective of
testing, is to uncover bugs! This attitude is important, because otherwise you
might subconsciously only run tests which you feel are safe and that the program
can handle.

1.5 License

ArrayOps is intended to be used (and improved) by as many people as possible,
and both in scientific and professional settings, without imposing any responsi-
bility on the author(s) of ArrayOps. Should you require an exception to either
the source-code or manual licenses described below, please contact the author(s)
for obtaining more specialized licenses.

1.5.1 Source-Code License

The ArrayOps source-code is published under the GNU Lesser General Public
License [Foundation], which essentially means that you may distribute commer-
cial programs that link with the ArrayOps library, as well as make alterations
to the ArrayOps library itself. There are certain terms to be met though, but
please see the license for those details. Note that you should use the license
included in the ArrayOps source-code distribution.

CHAPTER 1. INTRODUCTION 8

1.5.2 Manual License

I have been unable to find a standard license for protecting the rights to this
manual in a satisfactory manner. Generally speaking, you may download,
print, and use the manual for any personal purpose, be it commercial or non-
commericial – provided the author(s) are not held responsible for your actions,
or any damage caused by your use of the manual.

If you want to distribute the manual commercially, for example in a printed
book, or on a web-page that requires payment, then you must obtain a license
from the author(s). If you wish to make alterations or additions to the manual,
you may contact the author for a copy of the LATEXsource-files, and coordinate
your effort with the other author(s).

1.6 Contact

To obtain updates to the ArrayOps source-code library, or to get newer re-
visions of this manual, you should check the library’s webpage (http://www.
Hvass-Labs.org/). There you may also find information on how to contact the
authors, where to ask technical questions, obtain individual licenses for specific
purposes which are not covered by the generic license, and so on.

http://www.Hvass-Labs.org/
http://www.Hvass-Labs.org/

Chapter 2

Reference Manual

2.1 Introduction

This chapter describes the facilities of the ArrayOps library, and gives examples
on how to use them.

2.2 Installation

To use the ArrayOps source-code library, you must first add the proper path
to your C++ project’s include-paths. This is described in more detail in the
installation instructions that come with the library, and is therefore omitted
here.

2.2.1 Including Just Header-Files

Note however, that all files in the ArrayOps source-code library are actually
header-files, which means you should just include the header-file for the array-
type that you want to use, and that header-file will automatically include the
required framework, the mathematical operator and function overrides, and so
on. That is, there is no code-library that requires for you to build it, so installing
and using ArrayOps is made as simple as possible.

2.3 Array Types

One clear advantage of ArrayOps, is that you may combine different kinds of
arrays in a single arithmetic expression. This version of ArrayOps has the
following array-types:

• Array is the basic, resizable array. See section 2.3.2 for details.

• ArrayMini is an array whose size is small, and known at compile-time.
See section 2.3.3 for details.

9

CHAPTER 2. REFERENCE MANUAL 10

• ArrayUse takes a user-supplied storage and uses it for its array-elements.
See section 2.3.4 for details.

• ArrayAuto is the same as the basic Array-class, only it automatically
resizes according to the size of the right-hand expression in an assignment.
See section 2.3.5 for details.

Accessing an array-element takes constant time in all array-types of the
ArrayOps library, unless otherwise noted.

2.3.1 ArrayBase

By definition, all array-types which may occur as left-hand values (also called
lvalues) in assignments, must derive from the ArrayBase-class. As a user of
the ArrayOps library, you would normally not worry about this class, but it is
useful for you to know of its existence, when you need to understand what you
can and can not do with arrays and arithmetic expressions.

Most importantly is perhaps that an instance of the ArrayBase-class must
be sized. That is, it must provide a function Size() which returns some ap-
propriate value, so that you may address elements indexed between zero and
Size() minus one. This may not seem all that important right now, but is an
important assumption in many regards.

2.3.2 Array

The Array-class is the basic resizable array, and is found in the <ArrayOps/Array.h>
header-file, and takes the following template-arguments:

• T, which is the datatype of the array’s elements (e.g. int or double).

• Parallel, which is a boolean designating whether assignment-operations
should be performed in parallel, whenever this array-instance is the left-
hand of an assignment. Parallel defaults to true for the Array-class.

Constructors

There are two constructors available for the Array-class:

• Array(), which takes no arguments and performs no allocation. You must
call Resize() before performing any operations on the array.

• Array(unsigned int size), which takes as argument the size of the ar-
ray, and allocates storage accordingly. The size can be zero.

The destructor deletes the allocated storage (if any) upon deletion of the
Array-object. Also note that in debug-mode, an assertion will ensure that no
operations are performed on an array whose storage has not yet been allocated.

CHAPTER 2. REFERENCE MANUAL 11

Additional Functions

Furthermore, the Array-class provides the following functions:

• Resize(unsigned int size), that takes as argument the new size of the
array (which can be zero), and first deletes the current storage (if any),
and then tries to allocate the new storage. If this fails, an exception is
raised, and the old storage is lost. If allocation succeeds, the new storage
is not initialized though, as you must do this explicitly.

• ResizeCopy(unsigned int size), that takes as argument the new size
of the array (which can be zero), and first tries to allocate new storage.
If this fails, an exception is raised, but the old storage is retained and not
lost. If allocation succeeds, data is copied from the old storage, and any
remaining elements are left uninitialized, as you must do this explicitly.
Then the old storage is deleted.

2.3.3 ArrayMini

The ArrayMini-class is for arrays whose sizes are known at compile-time. The
arrays are typically allocated on the execution-stack, which means the arrays
should be fairly small. The class is found in the <ArrayOps/ArrayMini.h>
header-file, and takes the following template-arguments:

• T, which is the datatype of the array’s elements (e.g. int or double).

• kSize, which is an unsigned integer designating the size of the array, and
must be known at compile-time. The size must be one or greater.

• Parallel, which is a boolean designating whether assignment-operations
should be performed in parallel, whenever this array-instance is the left-
hand of an assignment. Parallel defaults to false for the ArrayMini-
class.

Constructors

There is just a single constructor available for the ArrayMini-class:

• ArrayMini(), which takes no arguments.

2.3.4 ArrayUse

The ArrayUse-class is used when you are supplied with a C++ array from
somewhere (e.g. the operating system), and wish to use it within the Ar-
rayOps framework, but without having to copy it first. The class is found
in the <ArrayOps/ArrayUse.h> header-file, and takes the following template-
arguments:

• T, which is the datatype of the array’s elements (e.g. int or double).

CHAPTER 2. REFERENCE MANUAL 12

• Parallel, which is a boolean designating whether assignment-operations
should be performed in parallel, whenever this array-instance is the left-
hand of an assignment. Parallel defaults to true for the ArrayUse-class.

Constructors

There is just a single constructor available for the ArrayUse-class:

• ArrayUse (T* storage, unsigned int size), which takes as arguments
a pointer to the storage, and its size (i.e. the number of elements). Note
that there is no way for the ArrayUse-class to check whether the storage
actually has that size, so the developer must ensure this by herself.

Also note that the storage is not copied, the ArrayUse-instance merely uses
the storage that is supplied in its constructor.

2.3.5 ArrayAuto

The ArrayAuto-class derives from the Array-class from section 2.3.2, and pro-
vides the exact same functions and has the same template arguments. It is
found in the <ArrayOps/ArrayAuto.h> header-file.

Automatic Resizing

As mentioned above, the purpose of the ArrayAuto-class is to automatically
resize itself according to the size of the right-hand expression in an assignment.
This is done by using the functions Resize and ResizeCopy from the Array-
class above, depending on whether an overwriting or accumulative assignment
is performed.

Resizing in Accumulative Assignments

When the right-hand expression of an accumulative assignment, is of a greater
size than the ArrayAuto-object occuring on the left-hand, and since the ResizeCopy-
function does not initialize any newly allocated elements of the array, the re-
maining part of the resized array will contain garbage, after performing such an
accumulative assignment.

This may change in future versions of ArrayOps, but you should generally
be careful when using ArrayAuto in accumulative assignments – and whenever
possible you should use the Array-class instead, and manually resize the array
when needed, so as to improve both safety and efficiency.

Constructors

There are several constructors available for the ArrayAuto-class, as we also allow
for implicit initialization from other ArrayAuto-objects as well as more general
ArrayOps expressions:

CHAPTER 2. REFERENCE MANUAL 13

• Array(), which takes no arguments and performs no allocation. You must
call Resize() before performing any operations on the array.

• Array(unsigned int size), which takes as argument the size of the ar-
ray, and allocates storage accordingly. The size can be zero.

• ArrayAuto(ArrayAuto const& x), which takes another ArrayAuto-object
as argument, and allocates storage accordingly, and then copies the ele-
ments from that object.

• template <class S1>
ArrayAuto(Expr<T, S1> const& x), which takes an arbitrary ArrayOps
expression as argument, allocates storage accordingly, and then evalu-
ates the supplied expression, assigning the result to the newly constructed
ArrayAuto object.

The destructor deletes the allocated storage (if any) upon deletion of the
ArrayAuto-object. Also note that in debug-mode, an assertion will ensure that
no operations are performed on an array whose storage has not yet been allo-
cated.

2.3.6 Accessing Array Elements

Array elements are normally accessed as you would with any basic C++ array.
That is, if A is an ArrayOps array, we would write A[i] to address the i’th
element of that array. Arrays in the ArrayOps library are indexed from zero up
to the array’s size minus one (also as in C++).

Using standard C++ syntax has a number of advantages, including that you
do not need to rewrite source-code written for C++ arrays (except for maybe
the function declaration).

Example

Now, assuming ArrayOps is in your include-path, using it is fairly simple. First
let us see how to instantiate an array of double-typed elements, consisting of
1024 elements, and assigning values to those elements:

#include <ArrayOps/Array.h> // Include the header-file.

int main(int argc, char* argv[])
{

const unsigned int k = 1024; // Size of the array.
ArrayOps::Array<double> A(k); // Create the array.

for (unsigned int i=0; i<k; i++) // Assign values to the
{ // array’s elements, one

A[i] = 1.0/(i+1); // at a time.
}

CHAPTER 2. REFERENCE MANUAL 14

return 0; // Return from main.
}

2.3.7 Checked Access

Array elements may also be accessed using the at()-function, which first checks
if the supplied index is within bounds, and if not, raises an exception. The
index must (as usual) be between zero and the array’s size minus one. Both
const and non-const at()-functions are provided, but the non-const lookup
may currently only be executed on instances of the ArrayBase-class, whereas
the const lookup may be executed on all ArrayOps expressions:

• T& at(unsigned int i), which is the non-const-version.

• T const& at(unsigned int i) const, which is the const-version.

If the index is out of bounds, the exception std::out of range will be raised
with an appropriate error-message.

Example

The following example shows how the at()-function may be used with a try
catch clause. Recall that arrays are indexed from zero to their size minus one,
which means the valid indices for the array A range from zero up to k-1, so
trying to access the element with index k is clearly a mistake:

const unsigned int k = 1024; // Size of the array.
ArrayOps::Array<int> A(k); // Create the array.

try
{

A.at(k) = 12345; // Throws exception!
}
catch (...)
{

std::cout << "Oops" << std::endl;
}

And the following example shows how to use checked lookup on an arithmetic
expression:

const unsigned int k = 1024; // Size of arrays.
ArrayOps::Array<int> A(k), B(k); // Create arrays.

// ...

try

CHAPTER 2. REFERENCE MANUAL 15

{
std::cout << (A+B).at(0) << std::endl;

}
catch (...)
{

std::cout << "Oops" << std::endl;
}

This way of accessing individual elements in an arithmetic expression involving
ArrayOps arrays, may also be done with ordinary and non-checked operator[]
lookup:

std::cout << (A+B)[0] << std::endl;

Both of which of course return a const-references, since an expression such as
A+B is not a socalled lvalue, and it therefore does not make any sense to assign
a value to it.

2.4 Index Manipulators

An array may also be accessed through the following index-manipulators:

• Slice takes as arguments an index offset and a new array size, and creates
a slice of the array accordingly.

• Cycle takes as argument an offset, and creates a cyclic array of the same
size as the original array, and with the given index offset.

• Reverse takes no arguments, but merely reverses the order of the array’s
elements.

Note that none of these index-manipulators copy any elements from the
arrays, but merely provide a wrapper-object that maps the index for accessing
the underlying array-elements.

As a result of this, you should generally avoid using the same array in the
left- and right-hand expressions of an assignment, when you also apply index
manipulators, as the result may be a bit surprising or even unpredictable. The
reason is that ArrayOps does not assume any particular traversal order when
computing an expression involving arrays; and this is particularly true if you
use parallelism as well.

2.4.1 Slice

A slice of an array is itself an array, which is (possibly) of smaller size and whose
index is (possibly) offset from that of the original array.

CHAPTER 2. REFERENCE MANUAL 16

Instantiating

The ArraySlice-class resides inside the ArrayBase-class, whilst also inheriting
from ArrayBase itself (this is possible through the use of forward-declarations).
The class has no template-parameters beyond those of the ArrayBase-class. It
is most easily instantiated through the Slice-function from ArrayBase:

• Slice(unsigned int offset, unsigned int size), which takes as ar-
guments the offset and the size of the new array. It returns an ArraySlice-
object, which may be used directly, or stored for later re-use (see example
below).

Note once more, that an ArraySlice is merely an index-mapping, and does
not copy the elements of the original array.

Example

The following example instantiates an array A, creates a slice half its size, and
offset a quarter of A’s size, and initializes the elements of that slice, to a certain
value:

const unsigned int k = 1024; // Array size.
Array<int> A(k); // Actual array.
Array<int>::ArraySlice B = A.Slice(256, 512); // The slice.

for (unsigned int i=0; i<B.Size(); i++) // Initialize
{ // slice with

B[i] = i; // some values.
}

Note that the elements of the slice B are really elements in the array A. That
is, the value of B[0] is really A[256] which is set to 0 in the loop above, B[1] is
really A[257] which is 1, B[2] is really A[258] which is 2, and so on; because
the elements of slice B merely refer to the elements of the original array A.

2.4.2 Cycle

A cycle of an array is itself an array, whose index is offset from that of the
original, but which allows the index to grow indefinitely, as it is mapped back
to the proper range by using modulo-arithmetics. The size of a cyclic array is
the same as the original array.

Instantiating

The ArrayCycle-class resides inside the ArrayBase-class, whilst also inheriting
from ArrayBase (this is possible through the use of forward-declarations). The
class has no template-parameters beyond those of the ArrayBase-class. It is
most easily instantiated through the Cycle-function from ArrayBase:

CHAPTER 2. REFERENCE MANUAL 17

• Cycle(unsigned int offset), which takes as argument the offset from
which to start the cycle. It returns an ArrayCycle-object, which may be
used directly, or stored for later re-use (see example below).

Note that an ArrayCycle is merely an index-mapping, and does not copy
the elements of the original array.

Example

Similarly to the example for the Slice-function above, we may create a cycle
offset to, say, index 1022:

const unsigned int k = 1024; // Array size.
Array<int> A(k); // Actual array.
Array<int>::ArrayCycle C = A.Cycle(1022); // The cycle.

for (unsigned int i=0; i<C.Size(); i++) // Initialize
{ // slice with

C[i] = i; // some values.
}

The elements of the cycle C are really elements in the array A. That is, the
value of C[0] is really A[1022] which is set to 0 in the loop above, C[1] is really
A[1023] which is 1, C[2] is really A[0] which is 2, and so on.

2.4.3 Reverse

The reverse of an array is itself an array, whose indices are merely inverted to
go from Size()-1 down to zero. The size of a reversed array is the same as the
original array.

Instantiating

The ArrayReverse-class resides inside the ArrayBase-class, whilst also inherit-
ing from ArrayBase (this is possible through the use of forward-declarations).
The class has no template-parameters beyond those of the ArrayBase-class. It
is most easily instantiated through the Reverse-function from ArrayBase:

• Reverse(), which takes no arguments and returns an ArrayReverse-
object, which may be used directly, or stored for later re-use (see example
below).

Note that an ArrayReverse is merely an index-mapping, and does not copy
the elements of the original array.

CHAPTER 2. REFERENCE MANUAL 18

Example

Similarly to the example for the Slice-function above, we may create a reversed
array:

const unsigned int k = 1024; // Array size.
Array<int> A(k); // Actual array.
Array<int>::ArrayReverse D = A.Reverse(); // Reversed array.

for (unsigned int i=0; i<D.Size(); i++) // Initialize
{ // slice with

C[i] = i; // some values.
}

The elements of the reversed array D are really elements in the array A. That
is, the value of D[0] is really A[1023] which is set to 0 in the loop above, D[1]
is really A[1022] which is set to 1, D[2] is really A[1021] which is set to 2, and
so on.

2.4.4 Nesting

What if we want to create a reversed slice? That is, first make a slice and then
reverse it. We could mistakenly try and write something like the following:

Array<int>::ArraySlice::ArrayReverse E =
A.Slice(256, 512).Reverse();

But this is erroneous usage of the Slice and Reverse functions! The reason is
that the function call A.Slice(256, 512) creates and returns a temporary ob-
ject, on which the Reverse function is invoked. This creates an ArrayReverse-
object which is then assigned to E. After this, the temporary ArraySlice-object
is automatically destroyed. So E now references a temporary object that was
just destroyed. The way to write this correctly would therefore be:

Array<int>::ArraySlice Z = A.Slice(256, 512);
Array<int>::ArraySlice::ArrayReverse E = Z.Reverse();

Where Reverse is now invoked on a local object Z, which E then references. We
may of course also use the results of the Slice and Reverse functions directly
in an arithmetic expression, such as:

C = B + A.Slice(256, 512).Reverse();

assuming B and C are appropriately typed and sized arrays. Here, the temporary
objects created by the calls to Slice and Reverse, will survive until the entire
assignment expression has been evaluated, due to C++ semantics for temporary
objects (see page 41 for details).

CHAPTER 2. REFERENCE MANUAL 19

2.5 Operators

All array-types in ArrayOps may be combined in arithmetic expressions involv-
ing various operators – provided of course, that the elements of those arrays
support those operators, as the operators are applied on an element-by-element
basis.

Note that an essential feature of ArrayOps, is that meta-programming en-
sures that no actual evaluation of an expression takes place before that expres-
sion is assigned to an array. (More on this in section 2.5.4 below.)

2.5.1 Arithmetic Operators

The usual arithmetic operators are provided, with the same meaning as for
scalar values: +, -, *, /, and %. Different array-types may be combined along
with constant scalar values and variables, etc.

Example

Let r, s ∈ R be two scalar real-values, and A,B ∈ Rk be two arrays each of
length k = 16. Then consider the following expression:

r ·A +
s

B

Which means we must compute the expression for each element of the arrays A
and B, as follows:

r ·Ai +
s

Bi
, ∀i ∈ {0, · · · , k − 1}

Now, if we use the double-precision floating point type double to approximate
real-numbers, and for the sake of illustration, use two different array-types for
the arrays A and B, we would have something like the following in C++ using
ArrayOps:

const unsigned int k = 16; // Array-size.
Array<double> A(k); // Array A.
ArrayMini<double, k> B; // Array B.
double r, s; // Scalar values.

// ...

r * A + s / B; // The expression.

Note however, that because no assignment occurs, nothing is actually ever com-
puted by the expression r * A + s / B; and in section 2.5.4 below, we will see
what happens when this is finally assigned to some array.

CHAPTER 2. REFERENCE MANUAL 20

2.5.2 Bitwise Operators

The usual bitwise operators are provided, with the same meaning as for scalar
values: <<, >>, &, |, and ^. These operators are (usually) only defined for
integer-typed values.

2.5.3 Logical Operators

The usual logical operators are provided, with the same meaning as for scalar
values: ==, !=, >, <, >=, <=, &&, ||, and !. These operators may take argument-
expressions of any (appropriate) datatype, e.g. arrays with elements of type
float, double, or int – or any other datatype, as long as it supports the
comparison operator in question. Note however, that all these logical operators
are assumed to return boolean-typed values.

As usual, these operators work on an element-by-element basis, which means
that we would e.g. compute a sequence of comparisons using the operator == for
arrays A and B, and not finally and the results of these individual comparisons,
to create a single measure of how one array compared to another. In other
words, the output of applying a logical operator, is itself an array.

Example

Let us say we wish to find out if the elements of some array A, are less than
the values of some array B plus a constant value c. This could be done using
ArrayOps as follows:

const unsigned int k = 16; // Array-size.
Array<int> A(k), B(k); // Arrays.
const int c = 12345; // Some value.

// ...

A < (B+c); // The comparison.

Again however, nothing is actually ever computed by the A < (B+c); expres-
sion, as it contains no assignment operator.

2.5.4 Assignment Operators

The usual assignment operators are provided, with the same meaning as for
scalar values: =, +=, -=, *=, /=, %=, &=, |=, ^=, <<=, and >>=. Some of these are
only meaningful for integer-type arrays (e.g. the bitwise shifting operators).

Deferred Computation

As previously mentioned, an important aspect of ArrayOps, is that computa-
tion of an expression involving array-types, is deferred until assignment of that
arithmetic expression to an array.

CHAPTER 2. REFERENCE MANUAL 21

The advantage of this, is of course that we may iterate through the arrays in
the right-hand expression of the assignment operator, and compute the value of
the arithmetic expression for each index of the array. This avoids the need for
temporary arrays, as is a known problem in the std::valarray class of C++.

Nested Assignment

It is possible to nest assignment operators in the C++ programming language.
This is also possible in ArrayOps, but there is currently no difference between
writing the assignments one by one, or nesting them; they compile to the same
thing.

It is possible to change the ArrayOps framework so that a nested assignment
is also flattened into a single loop, but it will increase the complexity of the
ArrayOps framework considerably, which is considered undesirable.

Example, Assignment Of Arithmetic Expression

Let us modify the examples from before. First, let us say we wish to compute
the following mathematical expression, for arrays A, B, and C, and scalar values
r and s:

C = r ·A +
s

B

This could be implemented using ArrayOps as follows (again assuming the size
k = 16, and using different array-types):

const unsigned int k = 16; // Array-size.
Array<double> A(k); // Array A.
ArrayMini<double, k> B, C; // Arrays B, C.
double r, s; // Scalar values.

// ...

C = r * A + s / B; // The expression.

The computation of the expression C = r * A + s / B; is automatically trans-
formed into a single loop by the ArrayOps framework:

for (unsigned int i=0; i<C.Size(); i++)
{

C[i] = r * A[i] + s / B[i];
}

This transformation takes place internally in the compiler, and the textual ex-
pression is not actually changed in the source-code.

Example, Assignment Of Comparison Expression

The comparison example from above, can be written as follows, where we assign
the result of the comparison to an array C:

CHAPTER 2. REFERENCE MANUAL 22

const unsigned int k = 16; // Array-size.
Array<int> A(k), B(k); // Arrays A, B.
Array<bool> C(k); // Bool array.
const int c = 12345; // Some value.

// ...

C = A < (B+c); // The comparison.

The computation of the expression C = A < (B+c); is again transformed into
a single loop by the ArrayOps meta-programming framework:

for (unsigned int i=0; i<C.Size(); i++)
{

C[i] = A[i] < (B[i]+c);
}

Note that ArrayOps is strong-typed, and as the comparison operator < yields a
boolean-valued expression, then the array C must be boolean-typed also; even
though the C++ programming language allows implicit conversions between,
say, boolean and integers.

Example, Nested Assignments

Let us say we have the following ArrayOps code-fragment:

const unsigned int k = 1024; // Array-size.
Array<int> A(k), B(k), C(k); // Arrays.
int m, n; // Some values.

// ...

C = m + (A = n * B); // The expression.

Since the ArrayOps framework treats nested assignments as a series of separate
assignments, the expression C = m + (A = n * B); is transformed into one
loop for each assignment occuring in it. That is, the expression is transformed
into the two following loops:

for (unsigned int i=0; i<A.Size(); i++)
{

A[i] = n * B[i];
}

for (unsigned int i=0; i<C.Size(); i++)
{

C[i] = m + A[i];
}

CHAPTER 2. REFERENCE MANUAL 23

2.6 Functions

A number of functions are provided in ArrayOps, that take arrays as function-
arguments. Many of these functions are simply array-versions of their scalar
counterparts, while others are proprietary for ArrayOps.

2.6.1 Mathematical Functions

The following mathematical functions are available for arrays: abs, fabs, ceil,
floor, sqrt, pow, cos, sin, tan, acos, asin, atan, atan2, cosh, sinh, tanh,
exp, log, log10, and fmod. The functions map directly to the functions from
the std-namespace, and the argument- and return-types of your arrays must
therefore be appropriate.

These functions are evaluated as any other mathematical operator, meaning
that they are only evaluated if the expression in which they occur, is actually
assigned to an array.

Example

Say we wish to compute:

C = sin(A) +
√

cos(B)

for some arrays A,B, C ∈ Rk, which means we wish to compute:

Ci = sin(Ai) +
√

cos(Bi), ∀i ∈ {0, · · · , k − 1}

As usual, we may use the floating-point datatype double to approximate real-
values, and using ArrayOps for the arrays of length, say k = 1024, we would
have the following source-code to compute the expression:

const unsigned int k = 1024; // Array size.
Array<double> A(k), B(k), C(k); // Arrays.

// ...

C = sin(A) + sqrt(cos(B)); // The expression.

The last expression is automatically transformed by the ArrayOps meta-programming
framework, to the following loop:

for (unsigned int i=0; i<C.Size(); i++)
{

C[i] = std::sin(A[i]) + std::sqrt(std::cos(B[i]));
}

Again, this transformation occurs internally in the compiler, and does not man-
ifest itself in your source-code.

CHAPTER 2. REFERENCE MANUAL 24

2.6.2 Power Functions

Power functions where the power k is an integer, may be computed by applying
the multiplication operator a total of log2(k) times, which may be advantageous
over using the standard pow-function, or even manually writing the expression
k times. The following specialized power-functions are available for all arrays if
only the array elements support the multiplication function, and the functions
are used as any other unary function: pow2, pow4, and pow8.

Example

Say we wish to compute:
C = A2 + B4

for some arrays A,B, C ∈ Rk, which means we wish to compute:

Ci = (Ai)2 + (Bi)4, ∀i ∈ {0, · · · , k − 1}

As usual, we may use the floating-point datatype double to approximate real-
values, and using ArrayOps for the arrays of length, say k = 1024, we would
have the following source-code to compute the expression:

const unsigned int k = 1024; // Array size.
Array<double> A(k), B(k), C(k); // Arrays.

// ...

C = pow2(A) + pow4(B); // The expression.

The last expression is effectively transformed by the ArrayOps meta-programming
framework, into the following loop:

for (unsigned int i=0; i<C.Size(); i++)
{

double A1 = A[i];
double A2 = A1 * A1;

double B1 = B[i];
double B2 = B1 * B1;
double B4 = B2 * B2;

C[i] = A2 + B4;
}

A clear advantage to this, is that you may have more complicated arithmetic
expressions, such as:

C = pow8(pow2(cos(A)) + pow2(sin(B)));

which compiles into the following:

CHAPTER 2. REFERENCE MANUAL 25

for (unsigned int i=0; i<C.Size(); i++)
{

double A1 = std::cos(A[i]); // A2 = pow2(cos(A[i]));
double A2 = A1 * A1;

double B1 = std::sin(B[i]); // B2 = pow2(sin(B[i]));
double B2 = B1 * B1;

double R1 = A2 + B2; // R8 = pow8(A2 + B2);
double R2 = R1 * R1;
double R4 = R2 * R2;
double R8 = R4 * R4;

C[i] = R8;
}

where we have used as few calculations as possible for the given expression.

2.6.3 Size

Recall that the ArrayBase-class is exactly used to define those array-types that
may occur as left-hands in assignments, and these array-types must have well-
defined sizes. The following functions are provided to query the size of such an
array:

• bool IsSized(), which must always return true for an instance of the
ArrayBase-class.

• unsigned int Size(), which returns the size of the array (possibly zero).

These functions are actually available for all expressions involving arrays, so you
may also call the functions in the following manner:

unsigned int n = (A+B).Size();

where A and B are some arrays.

2.6.4 Eval

A number of functions are provided, that let you use your own functions and
functor objects in expressions involving arrays. It was considered whether or not
to allow non-const functor objects in such expressions, but it was finally decided,
that it was safer to disallow side-effects altogether, in arithmetic expressions
involving arrays. (See section 2.8.4 for more details on this.)

Unary Functions

A couple of functions are provided for supporting the user’s own unary func-
tor objects, as well as pointers to unary functions. In all of these functions,

CHAPTER 2. REFERENCE MANUAL 26

the template-argument T refers to the type of the elements in the arrays, the
template-argument F is the functor-class, and the template-argument S is used
internally by the ArrayOps framework, and you should not have to worry about
it, as it is automatically deduced by the C++ compiler.

The functions are documented here with just their template-arguments and
the function header. The return-value of the functions are internal ArrayOps-
objects, which are nonsensical for someone who does not understand the inner-
workings of the ArrayOps implementation (see chapter 3 for this). The functions
are as follows:

• template <typename T, class F, class S>
Eval1 (Expr<T, S> const& expr, F const& f)
This function takes an array-expression as argument along with an in-
stance of the functor. Note the const-ness of both.

• template <class F, typename T, class S>
Eval1 (Expr<T, S> const& expr)
This function takes an array-expression as argument, but makes an in-
stance of the functor F by itself.

• template <typename T, class S>
Eval1 (Expr<T, S> const& expr, T (*f)(T))
This function takes an array-expression as argument along with a pointer
to a function f; for which C++ does not make it possible to ensure const-
ness.

Note that the ordering of the template arguments, are not the same for all of
these functions, so as to easen their automatic deductions by the compiler. The
functions are also available with different argument- and return-types, where
the template-argument T is then replaced by TArg and TRes:

• template <typename TRes, typename TArg, class F, class S>
Eval1 (Expr<TArg, S> const& expr, F const& f)

• template <class F, typename TRes, typename TArg, class S>
Eval1 (Expr<TArg, S> const& expr)

• template <typename TRes, typename TArg, class S>
Eval1 (Expr<TArg, S> const& expr, TRes (*f)(TArg))

Example

Let us say we are given arrays A,B, and C of length k, and of some arbitrary
type, and we wish to compute the following expression:

C = A + B8

which is here taken to mean:

Ci = Ai + B8
i , ∀i ∈ {0, · · · , k − 1}

CHAPTER 2. REFERENCE MANUAL 27

Suppose we did not have the eigth’-power functionality readily available in Ar-
rayOps, then we could either use the mathematical pow-function from above, or
we would have to write out B*B*...*B eight times. Alternatively however, we
may implement the eight’-power functionality as a functor-class in the following
manner:

template <class T>
class Pow8 : public std::unary_function<T, T>
{
public:

Pow8() : std::unary_function<T, T>() {}

inline
T operator() (T const& x) const
{

T x2 = x*x;
T x4 = x2*x2;
T x8 = x4*x4;

return x8;
}

};

Then we may compute the mathematical expression C = A + B8 as follows,
using ArrayOps with one of its Eval1 functions:

const unsigned int k = 1024; // Array size.
Array<double> A(k), B(k), C(k); // Arrays.
Pow8<double> f; // The functor

// ...

C = A + Eval1(B, f); // The expression.

Where the last expression is automatically transformed by the ArrayOps meta-
programming framework, into the following loop:

for (unsigned int i=0; i<C.Size(); i++)
{

C[i] = A[i] + f(B[i]);
}

2.6.5 Casting

ArrayOps was chosen to be strong-typed, which means that even the implicit
C++ type-promotions are disallowed. The four usual casting functions are
provided, but are named differently, so as to still allow the use of the traditional
casting on sub-classes of the array-types. The casting functions in ArrayOps
are as follows:

CHAPTER 2. REFERENCE MANUAL 28

• StaticCast maps to std::static cast.

• DynamicCast maps to std::dynamic cast.

• ConstCast maps to std::const cast.

• ReinterpretCast maps to std::reinterpret cast.

You may not find all of these casting-functions useful; in fact, you are prob-
ably only ever going to need the StaticCast-function.

Example

Let us say we wish to add the int-array A to a float-array B, and finally assign
this sum to the double-array C. The ArrayOps source-code for doing this, would
be as follows:

const unsigned int k = 1024; // Array size.
Array<int> A(k); // Array A.
Array<float> B(k); // Array B.
Array<double> C(k); // Array C.

// ...

C = StaticCast<double>(StaticCast<float>(A) + B);

Where the last expression is automatically transformed into the following loop:

for (unsigned int i=0; i<C.Size(); i++)
{

C[i] = std::static_cast<double>(
std::static_cast<float>(A[i]) + B[i]);

}

2.6.6 ReduceAll

A number of functions are provided for reducing the contents of an array into a
single scalar value. The idea is essentially to use a unary functor for accumula-
tion, and then traverse the array by calling the functor with each of the array’s
elements. For example, if f is such a functor, we want to perform the following
sequence of computations on it:

// Initialize functor f ...

const unsigned int kSize = x.Size();

for (unsigned int i=0; i<kSize; i++)
{

f(x[i]);

CHAPTER 2. REFERENCE MANUAL 29

}

// Retrieve result from functor f ...

You can imagine the result if the functor f is initialized internally with a value
of zero, and if the unary function invocation really performs the operation += on
the internal value with the current argument. Exactly, this is basic summation!

This functionality is provided by the following set of functions all named
ReduceAll, but taking different template- and function-arguments, depending
on whether the accumulation functor is provided or must be instantiated by the
ReduceAll-function, and whether the argument- and return-types are identical.
First are the functions where these types are the same:

• template <class F, class T, class S>
T ReduceAll(Expr<T, S> const& x, F& f), which has the functor pro-
vided as an argument. Note that the functor is of course not passed as a
const-reference, as it would not be able to update its contents then.

• template <class F, class T, class S>
T ReduceAll(Expr<T, S> const& x), which instantiates its own func-
tor.

The functions are also available with different argument- and return-types,
where the template-argument T is then replaced by TArg and TRes:

• template <class TRes, class TArg, class F, class S>
TRes ReduceAll(Expr<TArg, S> const& x, F& f)

• template <class F, class TRes, class TArg, class S>
TRes ReduceAll(Expr<TArg, S> const& x)

In all cases, it is assumed that the functor-class F provides two functions, here
written for the case where the argument-type TArg differs from the return-type
TRes. In case they are identical, we would of course just write one common type
T instead:

• void operator() (TArg const& x), which is a unary function taking as
argument the value x that must be accumulated.

• TRes opperator() (), which is a nullary function that simply returns
the result of the entire accumulation.

The reason that you must provide two functions, is that the ultimate querying
might also perform some calculations that are unnecessary during the accumula-
tion stage, and we thus avoid this overhead by only performing those calculations
once at the very end.

Note that we prefer accumulative operators, as we thereby avoid the need for
temporary values, and for more complicated user-defined types, accumulative
operators are often cheaper to execute.

CHAPTER 2. REFERENCE MANUAL 30

Accumulator-Class

ArrayOps has a basic implementation of such an accumulator where the argument-
and return-types are identical:

template <typename T, class F>
class Accumulator : public std::unary_function<T,T>
{
public:

Accumulator(T const& init) :
std::unary_function<T,T>(),
mFunctor(), mAcc(init) {}

inline
T const& operator() (T const& x)
{

mFunctor(mAcc, x);
return mAcc;

}

inline
T const& operator() ()
{

return mAcc;
}

protected:
const F mFunctor;
T mAcc;

};

Note that an initial value must be provided in the class’ constructor. This
initial value is for example zero for computing the sum and one for computing
the product. Also, the template argument F is supposed to be a simple functor
merely wrapping an accumulative and binary operator, an example could be the
following functor wrapping the += operator:

template<class T>
struct assign_plus : public std::binary_function<T, T, T>
{

inline
T& operator()(T& l, T const& r) const
{

return (l += r);
}

};

CHAPTER 2. REFERENCE MANUAL 31

Note that we return l as a reference and not a value, as the operator += is
(presumably) accumulative, and hence does not produce a temporary value for
its result.

Example

The summation function in ArrayOps as described in section 2.7.1 below, is
actually just implemented as follows:

template <typename T, class S> inline
T Sum(Expr<T,S> const& x)
{

return ReduceAll(x, Accumulator<T, assign_plus<T> >(0));
};

Initializing With First Array Element

This way of computing a reduction, such as the sum above, uses one more com-
putation than strictly necessary. If we had instead initialized the accumulator
with the first element of the array, then a single addition could be saved. This
however, requires a conditional statement for the case when the array has no
elements, in which case the result would be zero. So to save a single addi-
tive computation, we would not only need more complicated source-code, but
the computational cost could possibly even increase, as branches are sometimes
more expensive than arithmetic computations.

2.7 Reductions

A number of functions are provided for computing reductions, that is, functions
that take as argument an array and return a scalar value. There are essentially
two kinds of reductions in ArrayOps: Reductions that end up returning a value
of the same type as that of the elements of the provided array; an example of
which could be summation. And then there are reductions that return a value
of some other type, such as the computation of the average value of an array’s
elements, which usually is supposed to return a floating-point value.

2.7.1 Sum

Let A be an array of length n, then the sum of its elements is:1

sum(A) =
n−1∑
i=0

Ai = A0 + A1 + · · ·+ An−1

The ArrayOps function for computing the sum of an array’s elements is:
1Arrays in mathematical notation are also indexed from zero up to their length minus one,

to keep with the C++ notation.

CHAPTER 2. REFERENCE MANUAL 32

• template <typename T, class S>
T Sum(Expr<T,S> const& x), which takes as argument any ArrayOps
expression, and returns the accumulated sum of its elements.

Note that the template arguments are automatically deduced by the C++ com-
piler.

Example

Since we may pass any ArrayOps expression to the summation function, we
could have something like:

const unsigned int k = 1024; // Array size.
Array<int> A(k), B(k); // Arrays.

// ...

int s1 = Sum(A);
int s2 = Sum(A*B);

Where s1 holds the sum of the elements in array A, and s2 holds the sum of
the elements in the expression A*B. Note that we do not actually compute a
temporary array for storing the result of the expression A*B, but the summation
function merely evaluates the expression for each index, thus computing and
accumulating the elements resulting from the arithmetic expression, one at a
time.

2.7.2 Product

Let A be an array of length n, then its product is:

prod(A) =
n−1∏
i=0

Ai = A0 ·A1 · · ·An−1

The ArrayOps function for computing this product is:

• template <typename T, class S>
T Product(Expr<T,S> const& x), which takes as argument any Array-
Ops expression, and returns the accumulated product of its elements.

Again, the template arguments are automatically deduced by the C++ compiler.

2.7.3 Mean

Let A be an array of length n, then the arithmetic mean is defined as:

mean(A) =
1
n

n−1∑
i=0

Ai

CHAPTER 2. REFERENCE MANUAL 33

There are two ways of computing the mean of an array’s elements in ArrayOps,
the first is by calling the following function:

• template <typename T, class S>
double Mean(Expr<T,S> const& x), which returns the mean of the array
x as a double-typed value.

Here, the template arguments are automatically deduced by the C++ compiler,
but if you do not want the return-value to be double-typed, then you must call
the static Mean()-function inside the Reduce-class instead (see example below).

The reason that the Reduce-class is needed, is because template functions do
not allow for default parameters, so we can not just simply introduce another
template argument TRes and let it default to double, however convenient it
would have been.

Example

Let us compute the mean of various arrays and arithmetic expressions involving
those arrays:

const unsigned int k = 1024; // Array size.
Array<int> A(k), B(k); // Arrays, int.
Array<double> C(k); // Array, double.
Array<float> D(k), E(k); // Arrays, float.

// ...

double m1 = Mean(A);
double m2 = Mean(A*B);
double m3 = Mean(C);

float m4 = Reduce<float>::Mean(D/E);

The first few computations of the mean values, all result in a double-typed
return-value. The last results in a float-typed return-value. This example is
perhaps a bit contrived, and usually you will only want to use the Reduce-class if
you have some user-defined datatype, such as an arbitrary-precision fixed-point
numeric type.

2.7.4 Norm

The Euclidian (or L2) norm of an array A of length n, is defined as:

norm(A) =

√√√√n−1∑
i=0

A2
i

Again, there are two ways of computing the norm of an array’s elements in
ArrayOps, the first is by calling the following function:

CHAPTER 2. REFERENCE MANUAL 34

• template <typename T, class S>
double Norm(Expr<T,S> const& x), which returns the norm of the array
x as a double-typed value.

If you do not want the return-value to be double-typed, then you must call
the static Norm()-function inside the Reduce-class (see example for the Mean()-
function above).

2.7.5 Variance

The population variance for an array A of length n is defined as follows:

var(A) =
1
n

n−1∑
i=0

(Ai −mean(A))2

Again, there are two ways of computing the variance of an array’s elements in
ArrayOps, the first is by calling the following function:

• template <typename T, class S>
double Variance(Expr<T,S> const& x), which returns the variance of
the array x as a double-typed value.

If you do not want the return-value to be double-typed, then you must call
the static Variance()-function inside the Reduce-class (see example for the
Mean()-function above).

2.8 Semantics

ArrayOps was chosen to be fairly rigid in its semantic rules. Sometimes there
was no choice, due to the way ArrayOps is implemented, and at other times,
rigid semantics were chosen as they seemed to make most sense. This section
describes the semantic rules, and what ArrayOps does to help you obey them.

2.8.1 Implicit Resizing

An important aspect of ArrayOps, is that none of its array-types have implicit
resizing and allocation of storage – unless otherwise explicitly noted, as for
example with the ArrayAuto class from page 12. This means that you should
be able to use them in time-critical applications, at interrupt-level, etc. This
also means that no resources are spent during execution, to check whether an
array needs resizing.

Typically, you allocate the arrays at the beginning of some function, and
then perform hundreds, thousands, or maybe even thousands of thousands (they
call them millions!) of iterations, that evaluate some arithmetic expression on
the arrays. Having implicit if-statements checking the size on each of these
iterations, when you already know that the size is correct, is of course redundant.

CHAPTER 2. REFERENCE MANUAL 35

2.8.2 Strong-Typed

ArrayOps is strong-typed, even more so than the C++ programming language
itself. This means that arrays may only be combined in arithmetic expressions,
if they are of matching type, and implicit type-promotions are disallowed. If
you should try and combine arrays with elements of different datatypes, the
compiler should halt with an error.

This is really due to the way ArrayOps is implemented; but it is not really a
limitation, but rather an assistance to the user of ArrayOps. The reason is that
ArrayOps is of course a numeric library, intended for numeric computations,
where it is important to have control over such things as rounding errors. Since
ArrayOps does not allow implicit conversion between types, then the user of
ArrayOps must explicitly decide how to convert between datatypes each time.
This way, you avoid any surprises in erroneous conversions, unless of course,
you make the bug yourself.

2.8.3 Size-Matching

In vein of the strong-typed semantics of ArrayOps, it was also chosen to only
allow arrays with matching sizes to occur in arithmetic expressions.2 Unfortu-
nately, this may not be checked at compile-time, because the ArrayOps frame-
work generally allows for runtime changes in array-sizes.

From the discussion in section 2.8.1, it seems natural that we do not wish
to check arithmetic expressions, whether their sub-expressions and arrays are of
matching size, in the final release-build of the software using ArrayOps, because
ArrayOps is normally used in a fashion, where we would be able to test this
during development. The array-sizes are therefore enforced to match, by using
the assert()-function from C++, which only builds in the debug-version.

2.8.4 Constness

Another important aspect of ArrayOps, is that all arrays occuring in an arith-
metic expression, must support const lookup-functions of its elements. This
severely limits our abilities to create exciting and clever array-types, for ex-
ample for random number generation, as that would have to update internal
variables, and hence could not be const.

So why was this rule chosen; particularly when it is not strictly required
implementation-wise? The reason is simply that side-effects are troublesome
in more than one way. First off, arithmetic expressions with side-effects are
much harder to understand and maintain, and since the ArrayOps-framework
is already not the easiest thing to debug for a regular user, having side-effects
in arithmetic expressions could quickly become disastrous.

Secondly, ArrayOps supports parallelism through multi-threading (see sec-
tion 2.9), which requires for the arithmetic-expressions to either be computed

2The exception of course being the ArrayAuto-class which automatically resizes according
to the right-hand of an assignment. See page 12.

CHAPTER 2. REFERENCE MANUAL 36

thread-safely, or for the ArrayOps framework to determine whether a particular
arithmetic expression is thread-safe or not, and only compute those that are
thread-safe in parallel. It is actually possible to implement this kind of checking
using template meta-programming, but it is not desirable as it increases the
maintenance-difficulty considerably.

It is still possible to have side-effects in arithmetic expressions, although it
is strongly discouraged (and the feature may change or be removed entirely in
future versions). This is done using the Eval-function from section 2.6.4, that
takes a pointer to a function. Such functions addressed through pointers may
not be declared const in C++, and hence provides an opportunity for having
side-effects in arithmetic expressions.

2.8.5 Assertions

Assertions are used whenever possible, to check whether array-indices and array-
sizes are correct, to check if pointers are non-zero, and so on. Recall that
assertions are not compiled in the release-build of your program, and therefore
only raise exceptions in the debug-build of the program. This is both good and
bad, depending on what kind of error-checking you are hoping for.

Using assertions is good because you may have an abundance of error-
checking, which helps you during development to quickly pinpoint the source of
an error. Since assertions are not built into the release-version of your program,
this multitude of error-checking does not take up any resources in the final pro-
gram. But this is also the weak point of course, since assertions thereby do
nothing for you in terms of error-checking and error-handling in the release-
build of your program. This must be done using traditional exceptions; that is,
by using the throw and catch statements.

2.8.6 Exceptions

In the current version of ArrayOps, not much attention was paid to exceptions.
As described in section 2.3.7, functions are provided for checked lookup, that
throw exceptions if an index is out of bounds – also in the release-build.

But exceptions in arithmetic expressions are presently ignored in the Ar-
rayOps implementation. That is, if some arithmetic expression should raise
an exception, then ArrayOps does not catch and handle it; you the user are
assumed to do that yourself.

2.9 Parallelism

Parallelism in ArrayOps is implemented using OpenMP [Board], which is easily
implemented in the loop of the assignment operator.

CHAPTER 2. REFERENCE MANUAL 37

2.9.1 ArrayBase Support

Each instance of the ArrayBase-class is designated as either being parallel or
not. This is done through a boolean template-argument to the class, which
defaults to either true or false for the different array-types (see section 2.3),
and which may be changed by the user upon instantiation of an array.

Furthermore, the ArrayBase-class defines two functions for setting a parallel
limit used by OpenMP, for deciding whether or not the arrays are big enough
to merit the use of parallelism. This parallel limit may be changed at will, and
the functions for setting and querying the limit are as follows:

• int GetParLimit(), that returns the limit, below which execution must
be performed sequentially.

• void SetParLimit(int parLimit), that sets the limit, below which ex-
ecution must be performed sequentially.

Note that OpenMP only works with signed integers, which is also the cause of
the type-casting of the array-sizes in the examples below.

Example

Recall that the Array-class defaults to having parallel execution enabled. So
in the following example, whenever arrays A and B occur as the left-hand of an
assignment, the corresponding loop will be performed in parallel:

const unsigned int k = 1024; // Array-size.
Array<int> A(k), B(k); // Arrays A, B.
Array<int, false> C(k); // Array C.

// ...

A = B + C; // Parallel.

Where the assignment A = B + C; is automatically transformed into the fol-
lowing loop by the ArrayOps framework:

const int kSize = (int) A.Size()

#pragma omp parallel for if (kSize>=A.GetParLimit())
for (int i=0; i<kSize; i++)
{

A[i] = B[i] + C[i];
}

On the other hand, if the assignment had instead been the following:

C = A + B; // Non-parallel.

where C was defined in the above to be non-parallel, then the expression would
be transformed into the more familiar sequential loop:

CHAPTER 2. REFERENCE MANUAL 38

const int kSize = (int) C.Size()

for (int i=0; i<kSize; i++)
{

C[i] = A[i] + B[i];
}

Since this boolean for deciding whether to use parallelism or not, is given as
a template argument, we may at compile-time, decide whichever loop is the
appropriate.

2.9.2 Cache Coherency

An important issue when performing parallel programming using OpenMP, is
that of cache coherency. OpenMP is based on a socalled Shared Memory Pro-
cessor (SMP) architecture, in which multiple processors share their memory.
Each processor has several layers of cache to increase performance in accessing
the shared memory, but if one processor should update the memory that is held
in one or more of the other processors’ cache, then a penalty is incurred in the
execution time.

However, because the right-hand of an ArrayOps assignment has no side-
effects, and the left-hand is generally an array which should not occur in the
right-hand of an assignment in non-trivial ways3, the data that is written to the
shared memory, is generally located far from the data that is read, and hence
there should (generally) not be any problems with cache coherency, when using
the OpenMP-based parallel execution in ArrayOps.

3For example, you should not have slices of the left-hand array appear in the right-hand of
the assignment as well, as this is generally ill-defined if you do not know the execution order.

Chapter 3

Implementation

This chapter first describes the programming techniques used in the implemen-
tation of ArrayOps, and then documents the implementation itself. However,
documentation of the macros – which is an essential part of the implementa-
tion – has presently been omitted, because the macros are likely to change, and
should not be used by the user in their current form. Also, the actual imple-
mentation may differ slightly from what is described here, so as to better focus
on the essentials, and hopefully make the implementation more comprehensible.

3.1 Techniques

The following sections are introductory descriptions of the programming tech-
niques that are used in the implementation of ArrayOps.

3.1.1 Template Classes

Recall the concept of template classes in C++, in which you may use arbitrary
types for their template arguments. Take for example a non-template class that
sums a sequence of integers:

class Adder
{
public:

Adder(): mSum(0) {}

int operator() (int x) { return mSum += x; }

protected:
int mSum;

};

Which may be instantiated and used as follows:

39

CHAPTER 3. IMPLEMENTATION 40

Adder sum; // Object instance

sum(1); // sum is 1
sum(2); // sum is 3
sum(3); // sum is 6
sum(4); // sum is 10

If we wish to re-use this class for sums of numbers that are not necessarily
integer-typed, then we may provide the type as a template argument as follows:

template <class T>
class Adder
{
public:

Adder(): mSum(0) {}

T operator() (T x) { return mSum += x; }

protected:
T mSum;

};

Now we could also sum floating point numbers, by providing the appropriate
type as a template argument to the Adder-class, for example as follows:

Adder<double> sum; // Object instance

sum(1.1); // sum is 1.1
sum(2.2); // sum is 3.3
sum(3.3); // sum is 6.6
sum(4.4); // sum is 10.10

It is also possible to have other template arguments than just datatypes, for
example one could have booleans or integers as template arguments. This is
sometimes used in ArrayOps; just take the ArrayMini-class from section 2.3.3,
where the user must provide the size of the array as a template argument (an
unsigned integer).

Generating Specialized Code

The thing to remember about template arguments, is that they must always
be provided at compile-time. This means the compiler will generate specialized
code for that particular combination of template arguments.

Header & Source-File Separation

Another important thing, is that compilers presently do not allow for separation
of template classes into header- and source-files. Everything must be provided

CHAPTER 3. IMPLEMENTATION 41

in the header-files, though you can still organize the implementation in smaller
chunks in the header-file if you should find that desirable. This is not that bad
for ArrayOps though, as mostly everything is implemented as template classes,
because it also means that the user of the source-code library does not have to
build any code-library or source-files.

3.1.2 Temporary Objects

The automatic and implicit construction and destruction of temporary objects
in C++, is sometimes the source of vast amounts of overhead in the execution-
time, or as described in [Stroustrup, 1991, Section 10.4.10, page 254]:

Temporary objects most often are the result of arithmetic ex-
pressions. For example, at some point in the evaluation of x*y+z
the partial result x*y must exist somewhere. Except when perfor-
mance is the issue, temporary objects rarely become the concern of
the programmer. However, it happens.

Temporaries are the reason why only few people (if any) use the valarray
class from the Standard Template Library (STL). There are ways to get around
the implicit usage of temporaries however, for example by introducing abstract
objects instead1 – or indeed, by using meta-programming as in ArrayOps.

Passing By Value & Reference

The regular C++ programmer does not deal in those kinds of things, but still, it
is important that everyone knows when to pass and return values, and when to
use references, so as to avoid the generation of temporary objects – particularly
for template classes. For example, something as seemingly innocent as passing-
by-value to a function, may be extremely expensive, if that particular datatype
has a constructor which does much work (such as copying a large amounts of
data), and this was not conceived during the development of the template class
or function.

Take for example the summation-class from section 3.1.1 above, where the
following function uses pass- and return-by-value:

T operator() (T x) { return mSum += x; }

Instead, we should really have implemented the function as follows:

T const& operator() (T const& x) { return mSum += x; }

where both the argument x is passed as a const-reference, and the summation
variable mSum is returned as a const-reference. This ensures that for larger,
non-basic datatypes, we would still have an efficient summation function, which
did not spend any additional time creating temporary objects.

1But this introduces other problematic issues.

CHAPTER 3. IMPLEMENTATION 42

Lifetime of Temporaries

Another important issue with temporaries, is when the deletion of a temporary
object occurs. The lifetime of a temporary object is also described in [Strous-
trup, 1991, Section 10.4.10, page 254], and we quote here:

Unless bound to a reference or used to initialize a named object,
a temporary object is destroyed at the end of the full expression in
which it was created. A full expression is an expression that is not
a subexpression of some other expression.

So what was a full expression again? To understand this we must look at the
C++ syntax, but for our current purpose, let it suffice to say, that the temporary
object is deleted at the end of the statement in which it occurs. This means
that we can not, say, have created a temporary object in a function, and then
directly or indirectly return a reference to it. This is most important in the
ArrayOps implementation, as you will see below.

3.1.3 Meta-Programming

An important aspect of templates, is that they may be specialized in the source-
code also. This was originally intended to be used in specializing implementa-
tions for certain datatypes, for example to decrease the storage requirements for
the std::vector class, when used to hold boolean arguments. But consider the
following template function, for computing the sum of the elements in a basic
C++ array:

template <unsigned int k> inline
int Sum(int const* arr) { return arr[0]+Sum<k-1>(arr+1); }

template <> inline
int Sum<1>(int const* arr) { return arr[0]; }

template <> inline
int Sum<0>(int const* arr) { return 0; }

Where the template argument k designates the number of elements in the array
that are left in the summation. We provide two termination conditions, one for
the special case where k is one, and another case where k is zero. The latter
should only occur if the user explicitly calls the function with zero as template
argument.

The length of the array k must of course be known at compile-time, as it
is provided as a template argument. This is an essential requirement for all
template arguments, so the compiler may specialize the template already at
compile-time. Take for example the following C++ code:

const unsigned int k = 16;
int arr[k];

CHAPTER 3. IMPLEMENTATION 43

// ...

int mySum = Sum<k>(arr);

Here the compiler will first try and instantiate Sum<16>, which in turn uses
Sum<k-1>, that is Sum<15>. This in turn will make use of a call to the template
function Sum<14>, and so on. So the compiler will actually generate the following
code for the last line, due to the inlining:

int mySum = arr[0]+arr[1]+arr[2]+ ... + arr[15];

So in effect, the template function called Sum, will be flattened during compila-
tion, and is therefore a way to avoid the traditional loop-style summation. This
kind of flattening is somewhat analogous to the inner-workings of the ArrayOps
framework.

3.1.4 Nested Meta-Programming

What if we wanted to create a summation function for arbitrary datatypes and
not just integers? Well, this is where things get a bit tricky, due to restrictions
in the C++ language. We first have to wrap the function in a template class
which designates the datatype T (and any other template arguments that you
may need – here we only need T), and then have the template functions reside
inside that class:

template <class T>
class SumWrapper
{
public:

template <unsigned int k> static inline
T Sum(T const* arr) { return arr[0]+Sum<k-1>(arr+1); }

template <> static inline
T Sum<1>(T const* arr) { return arr[0]; }

template <> static inline
T Sum<0>(T const* arr) { return 0; }

};

Now, it would be a bit cumbersome to use this directly, as one would have to
write something like:

int mySum = SumWrapper<int>::Sum<k>(arr);

Instead, C++ has a neat little feature (which is essential to the ArrayOps
implementation), in that it may automatically deduce the datatypes of template
arguments, from the function parameters to a template function (you may want
to read this sentence again). To make this work, we therefore have to make a
function as follows:

CHAPTER 3. IMPLEMENTATION 44

template <unsigned int k, class T> inline
T Sum(T const* arr) { return SumWrapper<T>::Sum<k>(arr); }

Here, we only have to provide the k parameter, as C++ is of course not able
to automatically deduce it from the function parameters (k is the length of the
array, which is not provided anywhere). So we could have something like:

const unsigned int k = 128;
double arr[k];

// ...

double mySum = Sum<k>(arr);

Where C++ would automatically figure out, that the datatype T is actually
supposed to be double.

3.1.5 Reverse Inheritance

To specialize a class in C++, we often use socalled virtual functions. Let us
say we have a class A, and wish to specialize its functions f and g in a sub-class
B, and let us say the functions f and g must take integer-parameters, and also
return integers. This may be implemented as follows:

class A
{
public:

// ...

virtual int f(int x) = 0;
virtual int g(int x) = 0;

};

class B : public A
{
public:

// ...

virtual int f(int x) { /* return something */ }
virtual int g(int x) { /* return something */ }

};

The trouble with the virtual-construct, is that it generally has a small overhead
in execution time (there are exceptions to this rule). If we were to execute the
f and g functions many many times, and the functions themselves were quite
inexpensive, then the overhead would become a substantial part of the execution
time.

CHAPTER 3. IMPLEMENTATION 45

Another solution is to use socalled reverse inheritance, which has the benefit
that we may still say that class B is a sub-class of class A, but where the functions
to be specialized may be declared inline, thus avoiding the overhead of making
them virtual. The main drawback of this technique, is that the class-hierarchy
is no longer that obvious for the human eye, so the technique should only be used
sparingly and when absolutely necessary. Once again we make use of template
arguments, and this time we provide the specialization in a super-class of A
instead:

template <class S>
class A : public S
{
public:

// ...

// Assume super-class S provides functions f and g.
};

// The implementor-class for class B
class B_Imp
{
public:

// ...

inline int f(int x) { /* return something */ }
inline int g(int x) { /* return something */ }

};

// Convenient type-definition for the class B.
typedef A<B_imp> B;

Note that the super-class B Imp has functions f and g declared as inline. So
once the user instantiates class B (which is really class A<B Imp>), the function
f may be called on that object, and this will be compiled as an inline function,
and thus avoids the use of a lookup-table for virtual functions, which imposes a
significant overhead for small and frequently used functions; as discussed above.

The technique of reverse inheritance is essential in ArrayOps, as it enables
us to re-use the majority of the framework, by providing a single class named
Expr for an arithmetic expression, and make various specializations of this class.
Because of reverse inheritance, the functions of these specializations may be
declared inline, while the different kinds of expressions are still sub-classes of
the Expr-class. The operator-overloadings are then made as template functions
that automatically deduce the super-class S, as described in section 3.1.4 above.

Initialization

Suppose that we wanted to initialize B Imp with some parameters:

CHAPTER 3. IMPLEMENTATION 46

// The implementor-class for class B
class B_Imp
{
public:

B_Imp(int i, char c) : kI(i), kC(c) { /* ... */ }

inline int f(int x) { /* return something */ }
inline int g(int x) { /* return something */ }

protected:
const int kI;
const char kC;

};

The trouble here, is that class B can not initialize the member-fields of its
(ultimate) super-class B Imp, due to restrictions in the C++ language. Another
solution would be to pass the parameters i and c to the constructor of class A,
and pass them further on to A’s super-class. But this only works if class A is
always used with super-classes that require these specific parameters – which
then looses much of the versatility of the reverse inheritance technique.

Instead we pass an instance of B Imp to the constructor of class A, which in
turn passes it to its super-class as well. This means that we call a constructor
of B Imp with an instance of itself as argument. C++ automatically provides
such a constructor for any class,2 which copies all the member-fields.3 So we
may pass a B Imp-object through class A as follows:

template <class S>
class A : public S
{
public:

A (S const& s) : S(s) { /* ... */ }

// Assume super-class S provides functions f and g.
};

And then we can make a new class B that takes the appropriate arguments, and
sends a temporary instance of B Imp to the constructor of A, which in turn sends
it to its super-class B Imp, which then copies the member-fields by default:

class B : public A<B_imp>
{
public:

B(int i, char c) : A<B_imp>(B_Imp(i, c)) { /* ... */ }
};

2Unless we explicitly override it.
3If we require some special kind of initialization code to be performed, then we could make

a constructor as follows: B Imp(B Imp const& x) : kI(x.kI), kC(x.kC) { /* ... */ }

CHAPTER 3. IMPLEMENTATION 47

Since the instance we create by calling B Imp(i, C) is temporary, it is impor-
tant to remember, that it is destroyed once the call to the constructor of class A
returns. So you should generally not perform expensive calculations or alloca-
tions in the constructor and destructor of B Imp, as they would then be called
twice. Instead, you should provide this functionality separately, and call it from
the constructor and destructor of class B.

3.1.6 Macros

Much of the ArrayOps implementation re-uses the same textual source-code
with only small modifications. To do this efficiently, one can use macros. How-
ever, macros are not very powerful, and one problem with macros that is partic-
ularly annoying in ArrayOps, is that arguments to macros can not have commas
in them, as the comma is used to separate the macro-arguments themselves.

3.2 Framework

The basic idea in the meta-programming framework of ArrayOps, is to overload
the various operators (the functions operator+, operator*, and so on), and
have them build and return an expression tree. This is done at compile-time us-
ing template classes, that mimics the mathematical expression you have written
in your source-code, and the expression tree will then be flattened to a single
loop, due to inlining of the lookup functions of each sub-expression. Again,
since the template parameters of these classes are provided at compile-time, the
code is specialized and optimized at compile-time.

3.2.1 Class Hierarchy

The ArrayOps implementation has a single class named Expr, that all mathe-
matical expressions involing arrays must derive from. This gives us the ability,
to clearly tell whether an object is an expression involving arrays, and thus
enables us to re-use the entire framework, for all variants of the Expr-class.

To do this efficiently, we must always split such classes in two: The im-
plementation that will serve as super-class to the Expr-class through reverse
inheritance, and the actual class that will be instantiated.

3.2.2 Functors

The ArrayOps implementation uses socalled functors to provide and apply func-
tions to mathematical expressions. This means that we always have to wrap,
for example, static functions in appropriate functor objects.

3.2.3 Storage-Class

Before we start describing the meta-programming framework for the ArrayOps
implementation, let us first give a class used for storing data of arbitrary types.

CHAPTER 3. IMPLEMENTATION 48

It will not become clear why this class is actually necessary until sections 3.2.7
and 3.3, but since it is used in almost every class of the meta-programming
framework, we describe it here, and for the time being, let it suffice to say, that
it makes the ArrayOps framework much simpler in the long run.

Storage Abstraction

For storing either a reference or a copy of some data, we provide the following
abstract class:

template <class X, bool Copy>
class Storage
{
};

Where X is the datatype for the object that must be stored, and Copy designates
whether to store a copy of the object, or just a reference to that object. When
we say copy, we really mean that we store an actual instance, that may have its
contents copied during intialization of the Storage-object (more on this later).

The Storage-class is specialized depending on the value of the Copy tem-
plate boolean argument. It is furthermore assumed that each specialization
implements the following constructor and function:

• Storage(X const & x), which is the constructor that takes the object to
be referenced or copied as parameter.

• X const& Get() const, which is the function for retrieving the data.

The user of the Storage-class is of course assumed to ensure that data stored
only as a reference, is still available once retrieved.

Storing A Reference

First is the specialization of the Storage-class where we should not copy the
data that we wish to store, but merely hold a reference to it. This is the case
when the Copy template argument has the value false:

template <class X>
class Storage<X, false>
{
public:

Storage(X const& x) : mX(x) {}

inline X const& Get() const { return mX; }

protected:
X const& mX;

};

CHAPTER 3. IMPLEMENTATION 49

Note that the referenced data is declared const, meaning that we are not allowed
to make any alterations to the data – this is due to the semantic principle in
ArrayOps, that no side-effects are allowed in mathematical expressions.

Again, the user of the Storage-class is assumed to ensure that the data
being referenced, is still available once retrieved through the Get()-function.
The Storage-class would have no way of knowing if this data has been deleted
elsewhere in the program.4 In such a case where you either do not know if the
data is still available, or if you are certain that it is not, you should use the
Storage-specialization that copies the data instead of just holding a reference
to it.

Storing A Copy

Next is the specialization of the Storage-class that stores an instance or a copy
of the data, that is, where the Copy template argument has the value true:

template <class X>
class Storage<X, true>
{
public:

Storage(X const& x) : mX(x) {}
Storage() : mX() {}

inline X const& Get() const { return mX; }

protected:
X mX;

};

Where it is assumed that the class X has an appropriate constructor that copies
its data.5

Note that an additional constructor which takes no arguments, has been
supplied in this version of the Storage-class. This is used when one merely
wants to hold an instance of class X, but not initialize it with any particular
data – this is for example the case when using the Storage-class for instantiating
operator-functors (see e.g. section 3.2.5 on page 51 below).

3.2.4 Expr-Class

The class which every mathematical expression must implement through reverse
inheritance, is the Expr-class defined as follows:

template <typename T, class S>
class Expr : public S

4Unless one uses a more complicated allocation and deallocation scheme, where objects
have reference-counters.

5This is provided by default in C++, unless explicitly overrided in the source-code.

CHAPTER 3. IMPLEMENTATION 50

{
public:

Expr () : S() {}
};

Where T is the datatype of the expression’s elements (e.g. int or double), and
S is the super-class for the reverse inheritance. There are some assumptions
about the functionality of the super-class S, and also about an instance of the
Expr-class in general. These assumptions are depicted below.

Implementor & Instantiator

But first, to make things a bit easier, let us define our terminology. In particular,
we split the implementation for each kind of mathematical expression into two
classes:

• The implementor, which is the super-class S of the Expr-class. Among
other things, the implementor provides inlined lookup-functions of an ar-
ray’s elements, and the size-queries described below.

• The instantiator, which is a sub-class of the Expr-class, setting the S super-
class to the appropriate implementor-class, and is therefore merely used
as an easier way to instantiate the complete class.

This splitting into two classes is of course due to the use of reverse inheritance,
and will become more obvious shortly.

Size-Queries

An instance of the Expr class is always assumed to implement a lookup func-
tion by overriding the operator[]-function, as well as implementing the two
following functions for querying the size of the expression:

• bool IsSized(), which returns whether an expression is sized or not. For
example, the expression containing a constant value is not sized, whereas
an array must be sized.6

• unsigned int Size(), which returns the size of the expression provided
IsSized() returned true, otherwise the result of calling Size() is unde-
fined.

Again, these size queries must be available for all instances of the Expr-class,
so as a user of ArrayOps, you can assume the queries to be available for all
mathematical expressions involving arrays.

The way these queries are implemented, is usually by direct traversal of the
given expression tree. This however, should be optimized by the compiler to

6An array is also considered a mathematical expression in ArrayOps, since it implements
the Expr-class.

CHAPTER 3. IMPLEMENTATION 51

a single inlined function-call requiring constant execution time, due to the fact
that the leaves of the expression tree have their IsSized()-functions always
returning the same value, and the unary and binary expressions have a simple
relation between the IsSized()-query of their sub-expressions, and which sub-
expression to perform the Size()-query on. Alternatively, one could compute
and store the results of the size queries for a given expression, during the con-
struction of an object in the meta-programming framework, but this would be
much harder for the compiler to optimize.

Checked Lookup Function

The Expr-class provides the const checked lookup function that throws an ex-
ception if the index is out of range. The function merely uses the operator[]
function that is assumed to be provided by the implementor-class supplied
through the template argument S, and is hence implemented as follows:

// Element lookup, const.
T const& at(unsigned int i) const
{

if (i >= S::Size())
{

throw std::out_of_range(kErrRange);
}

return (*this)[i];
}

The non-const-version of this function is declared in the ArrayBase-class (see
page 73). The error-message for both these functions has been defined as:

const std::string kErrRange("Index out of range.");

3.2.5 Expr1-Class

Unary expressions are implemented by the Expr1-class. An example of a unary
function, could be that of negation. Say you have some array A and wish to write
-A, then this unary expression will be stored as an instance of the Expr1-class,
in the meta-programming framework of ArrayOps.

Implementor

The implementor for the Expr1-class – that is, the class that will ultimately
serve as the super-class for the Expr-class – is implemented as follows:

template <typename T, class Op, bool CopyOp,
class X, bool CopyX>

class Expr1_Imp
{

CHAPTER 3. IMPLEMENTATION 52

public:
Expr1_Imp() : mOp(), mX() {}
Expr1_Imp(X const& x, Op const& op) : mOp(op), mX(x) {}

inline
T operator[] (unsigned int index) const
{

// Get the operator functor.
Op const& op = mOp.Get();

// Apply operator and return result.
return op(mX.Get()[index]);

};

inline
bool IsSized () const { return mX.Get().IsSized(); }

inline
unsigned int Size () const { return mX.Get().Size(); }

protected:
Storage<Op, CopyOp> mOp; // Operator functor.
Storage<X, CopyX> mX; // Sub-expression.

};

Note that there is no non-const lookup-function, because it would be mean-
ingless. Also note that the lookup-function and the size-queries are all declared
inline.

Instantiator

Now comes the instantiator for the Expr1-class, that is, the class that we will use
to actually instantiate such an object, instead of manually using the Expr1 Imp-
class. The Expr1-class is as follows:

template <typename T, class Op, bool CopyOp,
class X, bool CopyX>

class Expr1 : public Expr<T, Expr1_Imp<T, Op, CopyOp,
X, CopyX> >

{
public:

// Convenient type-definition of implementor.
typedef Expr1_Imp<T, Op, CopyOp, X, CopyX> TImp;

Expr1(X const& x) : Expr<T, TImp>(TImp(x)) { }

Expr1(X const& x, Op const& op) :

CHAPTER 3. IMPLEMENTATION 53

Expr<T, TImp>(TImp(x, op)) { }
};

Note how the constructors actually create temporary instances of the Expr1 Imp-
class and pass them to the constructors of the Expr-class, which in turn pass
the objects to the constructor of its own super-class, here Expr1 Imp. This may
look a bit complicated at first, but once you get the hang of it, it simplifies
the source-code a great deal, as opposed to setting pointers to the expression
object x and operator functor op in the code-part of the constructors in the
Expr1-class.

3.2.6 Expr2-Class

The class for holding binary expressions in the meta-programming framework
is called Expr2, and is very similar to the class Expr1 for unary expressions.
An example of a binary function is addition of two sub-expressions. Say you
have arrays A and B and wish to write A+B, then this binary expression, will be
stored in an instance of the Expr2-class in the meta-programming framework of
ArrayOps, with its left-hand sub-expression being A, its right-hand expression
being B, and its operator functor being std::plus.

Implementor

The implementor for the Expr2-class – that is, the class that will ultimately
serve as the super-class for the Expr-class – is implemented very similarly to the
implementor for the Expr1-class, and is as follows:

template <typename T, class Op, bool CopyOp,
class L, bool CopyL,
class R, bool CopyR>

class Expr2_Imp
{
public:

Expr2_Imp(L const& l, R const& r) : mOp(), mL(l), mR(r) {}

Expr2_Imp(L const& l, R const& r, Op const& op) :
mOp(op), mL(l), mR(r) {}

inline
T operator[] (unsigned int index) const
{

// Get the operator functor.
Op const& op = mOp.Get();

// Apply operator and return result.
return op(mL.Get()[index], mR.Get()[index]);

};

CHAPTER 3. IMPLEMENTATION 54

inline
bool IsSized () const
{

return (mL.Get().IsSized() || mR.Get().IsSized());
}

inline
unsigned int Size () const
{

return (mL.Get().IsSized()) ? (mL.Get().Size())
: (mR.Get().Size());

}

protected:
Storage<Op, CopyOp> mOp; // Operator functor.
Storage<L, CopyL> mL; // Left operand.
Storage<R, CopyR> mR; // Right operand.

};

As with the Expr1 Imp-class, note that there is no non-const lookup-function,
because it would be meaningless. Also note that the lookup-function and size
queries are all declared inline, and that the size queries should be optimized
to a single overall call (see discussion on page 50).

Instantiator

Now comes the instantiator for the Expr2-class, that is, the class that we will
use to actually instantiate such an object, instead of manually instantiate from
the Expr2 Imp-class. The Expr2-class is as follows:

template <typename T, class Op, bool CopyOp,
class L, bool CopyL,
class R, bool CopyR>

class Expr2 : public Expr<T, Expr2_Imp<T, Op, CopyOp,
L, CopyL,
R, CopyR> >

{
public:

// Convenient type-definition of implementor.
typedef Expr2_Imp<T, Op, CopyOp, L, CopyL, R, CopyR> TImp;

Expr2(L const& l, R const& r) : Expr<T, TImp>(TImp(l, r))
{

assert(MatchingSize(mL.Get(), mR.Get()));
}

CHAPTER 3. IMPLEMENTATION 55

Expr2(L const& l, R const& r, Op const& op) :
Expr<T, TImp>(TImp(l, r, op))

{
assert(MatchingSize(mL.Get(), mR.Get()));

}
};

Again, note how these constructors create temporary instances of the Expr2 Imp-
class and pass them to the constructors of the Expr-class, which in turn pass
the objects to the constructor of its own super-class, here Expr2 Imp.

3.2.7 Values & Variables

Consider an expression like A = b * B + 0.25 * C; where A, B, and C are
arrays with double-typed elements, and b is a double-typed variable, and 0.25
is a double-typed constant. Obviously, the constant exists somewhere in the
program being compiled, and supposedly we could just as well use a reference
to it, instead of copying it into a local variable when executing the actual as-
signment.7 But since we are using meta-programming to duplicate the whole
expression internally in the compiler, it turns out that we can not use a reference
to the constant value 0.25, as we can with the variable b. For this reason, we
need expression-classes for both values and variables.

Implementor

The implementor class for both value- and variable-expressions is the same.
Actually, the class is very much like the Storage-class from section 3.2.3, only
we provide lookup through operator[] – where the index is just ignored – and
implement the size-queries as well:

template <typename T, bool Copy>
class ExprValVar_Imp
{
public:

ExprValVar_Imp(T const& value) : mValue(value) {}

inline
T const& operator[] (unsigned int index) const
{

return mValue.Get();
};

inline
unsigned int Size () const { return 0; }

7For datatypes that are more expensive to copy, this makes sense.

CHAPTER 3. IMPLEMENTATION 56

inline
bool IsSized () const { return false; }

protected:
Storage<T, Copy> mValue;

};

ExprVal Instantiator Class

When we have constant values in an expression involving arrays, such as the con-
stant value 0.25 above, we have the following instantiator class, which merely
ensures that the value is copied and not just referenced (note the true-valued
template argument to the ExprValVar Imp-class):

template <typename T>
class ExprVal : public Expr<T, ExprValVar_Imp<T, true> >
{
public:

// Convenient type-definition of implementor.
typedef ExprValVar_Imp<T, true> TImp;

ExprVal(T const& value) : Expr<T, TImp>(TImp(value)) {}
};

Note that we use the same kind of initialization of the implementor-class, as we
did for the Expr1- and Expr2-classes above.

ExprVar Instantiator Class

When we have variables in an expression involving arrays, such as the variable
b in the example from page 55, we have the following instantiator class, which
simply ensures that we store a reference to the variable (note the false-valued
template argument to the ExprValVar Imp-class):

template <typename T>
class ExprVar : public Expr<T, ExprValVar_Imp<T, false> >
{
public:

// Convenient type-definition of implementor.
typedef ExprValVar_Imp<T, false> TImp;

ExprVar(T const& value) : Expr<T, TImp>(TImp(value)) {}
};

3.3 Operators

In ArrayOps, an operator is really just taken to mean a function whose argument-
and return-types are identical. Currently, support for unary and binary opera-

CHAPTER 3. IMPLEMENTATION 57

tors are implemented, as they are the most common. Since ArrayOps does not
allow for any side-effects, it is meaningless to support nullary operators, as they
would always just produce the same value, and hence be identical to a constant
value.

3.3.1 Unary Operator

An example of a unary operator is that of negation. The following piece of
source-code implements negation for any kind of ArrayOps expression, whose
elements are of any type. Recall that C++ will only actually instantiate this
function if you use it, and you may therefore have a datatype T which does
not support negation, but this function can still be declared, as long as you do
not use it (if you do so anyway, you will ultimately get an error, because your
datatype T does not implement operator-). The ArrayOps operator-overload
for unary negation, is as follows:

template <typename T, class S>
Expr1<T, std::negate<T>, true, Expr<T, S>, false>
operator- (Expr<T, S> const& x)
{

return Expr1<T, std::negate<T>, true,
Expr<T, S>, false>(x);

};

Note that we use the std::negate-functor, and pass a true-valued template
argument to the Expr1-class, indicating the class should create and hold an
object for this functor. The false-valued boolean template argument to Expr1,
means that the parameter x should not be copied to the Expr1-instance that we
are creating, but it should merely hold a reference to it. The reason for this, is
that the expression tree is first built, then flattened, and finally also destroyed
during compilation, and the expression x will survive long enough for us to use
it for its purpose. Below we will see examples where this is not the case.

Also note that the parameter to the operator- overloading is declared
const, which ensures that no side-effects are allowed.

3.3.2 Binary Operator

For binary operators – that is, operators that take two arguments and return
just one – we need a series of functions, for the different cases where one of the
arguments is a constant value or a variable. Recall that we have two kinds of
expressions when dealing with constant values and variables. The expression
for constant values stores a copy of the value, and the expression for variables,
stores only a reference.

The C++ compiler automatically finds whichever operator overloading is
most appropriate depending on whether or not the paramater is const. When
the parameter is declared as a const-reference, then it most closely matches a

CHAPTER 3. IMPLEMENTATION 58

constant value, and when the parameter is declared as a non-const-reference,
then it most closely matches a variable.

In the following we have exemplified this for the addition operator (whose
functor is std::plus), but since the source-code would be identical for all op-
erators, with the exception of the operator- and functor-names, this is actually
implemented as macros in the ArrayOps framework.

Two Sub-Expressions

The most general case, is when both operands are expressions themselves. In
this case, the operator-overloading becomes:

template <typename T, class S1, class S2>
Expr2<T, std::plus<T>, true,

Expr<T, S1>, false,
Expr<T, S2>, false>

operator+ (Expr<T, S1> const& l, Expr<T, S2> const& r)
{

return Expr2<T, std::plus<T>, true,
Expr<T, S1>, false,
Expr<T, S2>, false>(l, r);

};

The objects for the expressions l and r, will live long enough for us to use
them, so there is no need to copy them inside the Expr2-object that we are
instantiating. This is indicated by the false-valued template arguments to the
Expr2-class.

On the other hand, the std::plus functor object is not instantiated any-
where, unless we instruct the Expr2-class to do so. This is done by passing the
appropriate true-valued template argument to the class, and this is the same
for all the variants of the operator-overloading that now follow.

One Sub-Expression & One Constant Value

When either the left- or right-hand is not an expression but a constant value,
then we have the following operator overloadings. First is the operator over-
loading if the right-hand is a constant value:

template <typename T, class S>
Expr2<T, std::plus<T>, true,

Expr<T, S>, false,
ExprVal<T>, true>

operator+ (Expr<T, S> const& l, T const& r)
{

return Expr2<T, std::plus<T>, true,
Expr<T, S>, false,
ExprVal<T>, true>(l, ExprVal<T>(r));

};

CHAPTER 3. IMPLEMENTATION 59

And similarly the operator overloading for when the left-hand is a constant
value:

template <typename T, class S>
Expr2<T, std::plus<T>, true,

ExprVal<T>, true,
Expr<T, S>, false>

operator+ (T const& l, Expr<T, S> const& r)
{

return Expr2<T, std::plus<T>, true,
ExprVal<T>, true,
Expr<T, S>, false>(ExprVal<T>(l), r);

};

There are two things to note here, first that a constant value, say a value declared
as const double d = 10,5; does not continue to exist until we will need it.
Therefore we must copy the value, and this is done in the ExprVal-object.

The second thing to note, which is just as important, is that we create
and send an ExprVal-object to the constructor of the Expr2-class. The trouble
here is, that in the C++ object system, the object that we make with the
statement ExprVal<T>(r),8 is actually destroyed once the Expr2-constructor
returns. This is not so strange when you think about it, as the object (in view
of C++ semantics) is only meant to be used as a parameter to the Expr2 class’
constructor. But it naturally means that we must ensure the object is also
copied into the Expr2-object, which is what the true-valued boolean template
arguments designate.

One Sub-Expression & One Variable

When either the left- or right-hand is not an expression but a scalar variable,
then we have the following operator overloadings. First is the operator over-
loading if the right-hand is a variable:9

template <typename T, class S>
Expr2<T, std::plus<T>, true,

Expr<T, S>, false,
ExprVar<T>, true>

operator+ (Expr<T, S> const& l, T& r)
{

return Expr2<T, std::plus<T>, true,
Expr<T, S>, false,
ExprVar<T>, true>(l, ExprVar<T>(r));

};

And the operator overloading for when the left-hand is a variable, is similar:
8And similarly for ExprVal<T>(l) of course.
9Note the difference from when the right-hand was a constant value, which was indicated

by the const keyword.

CHAPTER 3. IMPLEMENTATION 60

template <typename T, class S>
Expr2<T, std::plus<T>, true,

ExprVar<T>, true,
Expr<T, S>, false>

operator+ (T& l, Expr<T, S> const& r)
{

return Expr2<T, std::plus<T>, true,
ExprVar<T>, true,
Expr<T, S>, false>(ExprVar<T>(l), r);

};

Once again, there are two things to note, first that a variable, say a value
declared as double d; does continue to exist until we need it. Therefore we
do not need to copy the value, and may therefore use the ExprVar-class, which
performs no such copying, but merely holds a reference.

The second thing to note however, is that we still must copy the ExprVar
objects that we send to the Expr2 constructor, because the ExprVar objects
that we create, will be destroyed by the C++ system once the constructor for
the Expr2-class returns. Again, this required copying is what the true-valued
boolean template arguments to the Expr2-class designate.

3.4 Functions

Functions are provided for manipulating arrays; some of the functions do this
one element at a time, and other functions manipulate all the elements in turn.

3.4.1 Eval1

The Eval1 functions are used to apply your own functions to the elements of an
array, one element at a time, and thus integrate seamlessly into the ArrayOps
meta-programming framework. Since the ArrayOps framework uses functors,
it is only natural that the user must provide the functionality to be applied,
as a functor. The following sections list the implementations of the different
variants of the Eval1 functions, depending on what kind of functors are to be
used. Note that the ordering of the template arguments differ for each of the
Eval1 functions, so as to improve the C++ compiler’s ability to automatically
deduce the template arguments.

Functor Object Provided

The first version of the Eval1-function takes a user-supplied functor object (that
is, the Eval1-function should not instantiate its own functor object), and the
argument- and return-types are identical. The function is as follows:

template <typename T, class F, class S>
Expr1<T, F, false, Expr<T, S>, false>

CHAPTER 3. IMPLEMENTATION 61

Eval1(Expr<T, S> const& expr, F const& f)
{

return Expr1<T, F, false, Expr<T, S>, false>(expr, f);
};

Note that the C++ compiler automatically deduces the functor class F, and
as we are returning an Expr1 expression object, with the appropriate boolean
template argument set to false, we do not copy the supplied functor object,
but merely store a reference to it.

We may use this version of the Eval1-function in the following manner,
where A and B are arrays with double-typed elements:

A = Eval1(B, std::negate<double>());

This would compile into a single loop like:

for (unsigned int i=0; i<A.Size(); i++)
{

A[i] = f(B[i]);
}

Where f refers to the std::negate<double> functor object.
But is this legal? Does this functor object still exist when we finally get

around to using it. The answer is yes, because the statement A = Eval1(B,
std::negate<double>()); that creates the temporary functor object, first
destroys that object, when the entire statement has been executed (see sec-
tion 3.1.2). The fact that the statement really compiles into a loop through
the use of meta-programming, does not make any difference, as it is merely
considered to be the realization or actual implementation of that statement.

Functor Object Provided, Different Argument- & Return-Types

When the functor object is provided, but the argument- and return-types are
different, we may use the following version of the Eval1-function:

template <typename TRes, typename TArg, class F, class S>
Expr1<TRes, F, false, Expr<TArg, S>, false>
Eval1(Expr<TArg, S> const& expr, F const& f)
{

return Expr1<TRes, F, false, Expr<TArg, S>, false>(expr, f);
};

Functor Object Not Provided

When we do not have an instance of the functor class, we must explicitly provide
it as a template argument when calling the Eval1-function. The version of Eval1
that supports this, is as follows:

CHAPTER 3. IMPLEMENTATION 62

template <class F, typename T, class S>
Expr1<T, F, true, Expr<T, S>, false>
Eval1(Expr<T, S> const& expr)
{

return Expr1<T, F, true, Expr<T, S>, false>(expr);
};

Note that the appropriate template-argument is set to true, so as to indicate
that the returned Expr1-object, must instantiate the functor in question. Since
this functor must be the first template argument passed to the Eval1-function,
an example of its usage could be:

A = Eval1<std::negate<double> >(B);

Here, the element datatype for arrays B and ultimately also A, are automatically
deduced by the C++ compiler, and should of course match the datatype for the
functor that is to be applied, here double.

Functor Object Not Provided, Different Argument- & Return-Types

When we do not have an instance of the functor class, and the argument- and
return-types are different, then the following version of Eval1 may be used:

template <class F, typename TRes, typename TArg, class S>
Expr1<TRes, F, true, Expr<TArg, S>, false>
Eval1(Expr<TArg, S> const& expr)
{

return Expr1<TRes, F, true, Expr<TArg, S>, false>(expr);
};

Pointer To Function

When we have a pointer to a unary function, we may use the following version
of the Eval1 function:

template <typename T, class S>
Expr1<T, std::pointer_to_unary_function<T, T>, true,

Expr<T, S>, false>
Eval1(Expr<T, S> const& expr, T (*f)(T))
{

return Expr1<T, std::pointer_to_unary_function<T, T>, true,
Expr<T, S>, false>(expr,
std::pointer_to_unary_function<T, T>(f));

};

This may be used as follows:

A = Eval1(B, &std::sqrt);

CHAPTER 3. IMPLEMENTATION 63

It is important to note that we instruct the Expr1-class to make its own
instance of the functor that it is to apply, by setting the appropriate template
argument to true, and furthermore that its constructor takes two arguments –
an expression and a functor object – and then actually copies the functor object
to its own internal instance of that functor. So even though the temporary
std::pointer to unary function object that we instantiate in the code above
and send to the constructor of the Expr1-class, is naturally destroyed when we
return from that constructor; it does not matter, because the Expr1-object that
we are returning, has actually copied that std::pointer to unary function
object to its internal functor object, and has thus stored a pointer to the supplied
function f.

Also note that C++ does not allow us to declare f as being const. This
means that we have actually provided a backdoor for having side-effects in
arithmetic expressions in ArrayOps. You should not use it in such a manner
though, as the code is much more error-prone and harder to understand when
there are side-effects.

Pointer To Function, Different Argument- & Return-Types

When we wish to use a pointer to a function, but have different argument- and
return-types, we may use the following version of the Eval1-function:

template <typename TRes, typename TArg, class S>
Expr1<TRes, std::pointer_to_unary_function<TArg, TRes>, true,

Expr<TArg, S>, false>
Eval1(Expr<TArg, S> const& expr, TRes (*f)(TArg))
{

return Expr1<TRes,
std::pointer_to_unary_function<TArg, TRes>,
true,
Expr<TArg, S>, false>(expr,
std::pointer_to_unary_function<TArg, TRes>(f));

};

3.4.2 Casting

In C++ there are four different types of casting: Static, dynamic, re-interpret,
and const-casting. These casting functions are also supported for elements of
arrays in ArrayOps, and are applied on an element-by-element basis.

To implement these casting functions, we really use a macro, but in the
following, we will merely exemplify the principle for static-casting, where the
idea is to create an ArrayOps-expression that will cast an expression using the
static cast function from C++. First we implement a functor that provides
this functionality:

template <typename TRes, typename TArg>
struct static_caster : public std::unary_function<TRes, TArg>

CHAPTER 3. IMPLEMENTATION 64

{
TRes operator()(TArg const& x) const
{

return static_cast<TRes>(x);
}

};

Then we provide the function StaticCast for the user to call in an expression
involving arrays:

template <typename TRes, typename TArg, class S>
Expr1<TRes, static_caster<TRes, TArg>, true,

Expr<TArg, S>, false>
StaticCast (Expr<TArg, S> const& expr)
{

return Expr1<TRes, static_caster<TRes, TArg>, true,
Expr<TArg, S>, false>(expr);

};

For example, let A and B be a double-typed array, and let C be of some other
type (for example int-typed). Then the StaticCast-function may be used as
follows:

A = B + StaticCast<double>(C);

Which effectively compiles into the following:

for (unsigned int i=0; i<A.Size(); i++)
{

A[i] = B[i] + static_cast<double>(C[i]);
}

3.4.3 EvalAll

The EvalAll functions are currently only used in the assignments of Array-
Ops, and they are the functions that implement the for-loops that arithmetic
expressions in ArrayOps are ultimately flattened to. Different versions of the
EvalAll functions are available, for taking right-hand arguments that are ei-
ther expressions or values, and whether or not execution must be performed in
parallel.

Since the boolean deciding parallelism is a template-argument in the ArrayBase-
class, and left-hands of the EvalAll-functions must be such ArrayBase-objects,
then we can switch between the parallel and non-parallel implementations at
compile-time.

Non-Parallel EvalAll-Functions

The non-parallel version of the EvalAll that takes an expression as its right-
hand argument, is as follows:

CHAPTER 3. IMPLEMENTATION 65

template <class Op, class T, class S1, class S2>
void
EvalAll(ArrayBase<T, S1, false>& arr, Expr<T, S2> const& expr)
{

assert(MatchingSize(arr, expr));

const Op op;
const int kSize = (int) arr.Size();

for (int i=0; i<kSize; i++)
{

op(arr[i], expr[i]);
}

}

Note the false-valued boolean template argument for the left-hand ArrayBase-
argument to the EvalAll-function, and that the right-hand argument is declared
const, which means that there can be no side-effects. When the right-hand
argument is a value instead of an ArrayOps expression, the function is as follows:

template <class Op, class T, class S1>
void
EvalAll(ArrayBase<T, S1, false>& arr, T const& val)
{

const Op op;
const int kSize = (int) arr.Size();

for (int i=0; i<kSize; i++)
{

op(arr[i], val);
}

}

There should be no surprises here, although you may note that we instantiate
the functor object for the operator outside the for-loops, because this could
potentially be expensive for non-trivial functors. The size is converted to a
signed integer, so as to have an implementation that is almost identical to the
parallel version below.

Parallel EvalAll-Functions

The parallel versions of the EvalAll functions use OpenMP [Board] to imple-
ment parallelism in the for-loop. Typically the operator functor contains no
data at all, and merely provides raw functionality (such as assignment, or ac-
cumulative assignment). At any rate, the functor object for the operator is
declared const, to disallow side-effects. When the right-hand argument is an
expression, the parallel EvalAll function is as follows:

CHAPTER 3. IMPLEMENTATION 66

template <class Op, class T, class S1, class S2>
void
EvalAll(ArrayBase<T, S1, true>& arr, Expr<T, S2> const& expr)
{

assert(MatchingSize(arr, expr));

const Op op;
const int kSize = (int) arr.Size();

#pragma omp parallel for if (kSize>=arr.GetParLimit())
for (int i=0; i<kSize; i++)
{

op(arr[i], expr[i]);
}

}

When the right-hand argument is a value, the parallel EvalAll function is:

template <class Op, class T, class S1>
void
EvalAll(ArrayBase<T, S1, true>& arr, T const& val)
{

const Op op;
const int kSize = (int) arr.Size();

#pragma omp parallel for if (kSize>=arr.GetParLimit())
for (int i=0; i<kSize; i++)
{

op(arr[i], val);
}

}

OpenMP requires for the size to be a signed integer, although the ArrayOps
framework uses unsigned integers. This is the reason why we cast the array-
sizes in all of these functions, to keep them as identical as possible.

3.4.4 ReduceAll

In ArrayOps the ReduceAll set of functions provide basic functionality for re-
ducing an array into a single scalar value. The usage of these functions was
detailed in section 2.6.6 on page 28, and here we shall only recap the fact
that we use an accumulative functor that is assumed to provide two operator-
overloadings: One unary, and one nullary. The unary overloading of operator()
takes an argument of appropriate type and accumulates it to some internal vari-
able. The overloading of operator() that takes zero arguments, is a simple
query of the result, which may or may not perform some final calculations.

CHAPTER 3. IMPLEMENTATION 67

The different versions of the ReduceAll functions are similar in flavour to
the Eval1 set of functions from page 60, in that they provide the user with the
opportunity to call the ReduceAll function with or without a functor object,
and with either matching or differing argument- and return-types.

Functor Object Provided

When the accumulative functor object is provided, the following version of the
ReduceAll-function should be used:

template <class F, class T, class S>
T ReduceAll(Expr<T, S> const& x, F& f)
{

assert(x.IsSized());
const unsigned int kSize = x.Size();

for (unsigned int i=0; i<kSize; i++)
{

f(x[i]);
}

return f();
}

Note that the ArrayOps expression which is reduced, is declared const, and
hence does not change. This is due to the fact that ArrayOps should not al-
low side-effects in arithmetic expressions, and we may of course pass any kind
of arithmetic expression to the ReduceAll function. But the functor object
computing the actual reduction, can of course not be declared const.

Functor Object Provided, Different Argument- & Return-Types

When the accumulative functor object is provided, and the argument- and
return-types are different, the following version of the ReduceAll-function should
be used:

template <class TRes, class TArg, class F, class S>
TRes ReduceAll(Expr<TArg, S> const& x, F& f)
{

assert(x.IsSized());
const unsigned int kSize = x.Size();

for (unsigned int i=0; i<kSize; i++)
{

f(x[i]);
}

CHAPTER 3. IMPLEMENTATION 68

return f();
}

Functor Object Not Provided

When the accumulative functor object is not provided, the following version of
the ReduceAll-function should be used:

template <class F, class T, class S>
T ReduceAll(Expr<T, S> const& x)
{

assert(x.IsSized());
const unsigned int kSize = x.Size();

F f;

for (unsigned int i=0; i<kSize; i++)
{

f(x[i]);
}

return f();
}

Functor Object Not Provided, Different Argument- & Return-Types

When the accumulative functor object is not provided, and the argument-
and return-types are different, the following version of the ReduceAll-function
should be used:

template <class F, class TRes, class TArg, class S>
TRes ReduceAll(Expr<TArg, S> const& x)
{

assert(x.IsSized());
const unsigned int kSize = x.Size();

F f;

for (unsigned int i=0; i<kSize; i++)
{

f(x[i]);
}

return f();
}

CHAPTER 3. IMPLEMENTATION 69

3.5 Reductions

As described on page 31, there are essentially two kinds of reductions in Array-
Ops: Reductions that result in a single scalar value of the same type as the array
that is reduced, and reductions that result in a single scalar value of some other
type. We saw an example of the former on page 31, which was the Sum-function
that computes the summation of an array’s elements.

3.5.1 Reduce-Class

Some kinds of reductions may result in fractional numbers. This is for example
the case with the Mean-function for computing the average of the array’s ele-
ments. Most often we will probably just use the built-in datatypes from C++,
and would hence like this average returned as a double-typed value. However,
there may be cases where you want the internal calculations of a reduction, to
use a custom datatype with higher precision, and hence will need to instruct the
function computing the reduction about this. But since C++ does not allow
default values for the template arguments of functions (C++ only allows this
for classes), then we must split the implementation of these kinds of reductions
in two: One part that can return arbitrary types, and one part which merely
uses the double-type, for convenience. Let us start with the former, which we
wrap in a template class:10

template <typename TRes=double>
class Reduce
{
public:

// Mean
template <typename TArg, class S>
static inline
TRes Mean(Expr<TArg,S> const& x)
{

assert(x.IsSized());
assert(x.Size()>0);

return ((TRes) Sum(x))/x.Size();
};

};

Since the functions in this class are declared static, we do not have to instan-
tiate an object before we can use those functions. So it can be used directly, in
a manner like this:

double avg = Reduce::Mean(A);

10This class actually holds other functions for computing reductions as well, such as the
Norm and Variance functions.

CHAPTER 3. IMPLEMENTATION 70

Where A is some array. This notation however, does not seem all that convenient,
so ArrayOps provides another function as well, which simply wraps this for us,
for the case where the return-value is double-typed:

template <typename T, class S> inline
double Mean(Expr<T,S> const& x)
{

return Reduce<double>::Mean(x);
};

Which allows us to write the more comprehensible:

double avg = Mean(A);

3.6 Arrays

In the ArrayOps framework, arrays are themselves considered expressions, and
must therefore implement the Expr-class described in section 3.2.4. We shall
not give the implementations of all the different array-classes here, but suffice
with their base-class ArrayBase and a few good examples of arrays; the fixed-size
ArrayMini-class, and the automatically resizable ArrayAuto-class which derives
from the Array-class. Hopefully you will understand the implementation from
this, and be able to write array-classes of your own, should the default ones not
meet your needs.

3.6.1 Assignment

Before we describe the actual array implementations, let us first look at as-
signment between objects in C++. First off, in C++ we must implement the
assignment operators in the class itself, so even though we have a common base-
class for all arrays (the ArrayBase-class), we are not able to just implement
assignment there. However, this is not the case for accumulative assignment
operators (such as +=, -=, and so on), which can indeed be implement for just
the common base-class.

Beyond the accumulative assignment overloadings, there are three kinds of
assignments that we must be able to handle in any array-class in ArrayOps:

• Assignment from an array-object of the exact same class. (More on this
below.)

• Assignment from any ArrayOps expression.

• Assignment from a value. That is, each element in the array must be
assigned the same value.

Typically, you will just use a macro for making all the assignment functions in
your array-class. An example of such a macro is given below.

CHAPTER 3. IMPLEMENTATION 71

Assignment From Exact Same Classes

In C++, performing assignment on objects of the exact same class, defaults
to assignment for each of the objects’ member-fields. For classes with many
member-fields, this is often a nice feature of the language, but in some cases it
could give rise to disastrous bugs if we do not override this kind of assignment
properly.

Take for example an array that allocates storage and saves a pointer to this
storage. If we had not provided a specialized assignment operator for this kind
of array, such an assignment would result in just the pointer getting assigned,
instead of actually copying the elements of the arrays, as we intend – and this is
even though we might have implemented the assignment operator which takes
a right-hand that is an Expr-object, which the array-class itself inherits from.
Assignment from the exact same class still defaults to assignment of all of the
individual member-fields, and this assignment takes precedence as it is a better
match.

Exact Same Template Class?

The classes that are used to implement arrays in ArrayOps, are all template
classes. So implementing assignment from the exact same class, naturally raises
the question: What is the exact same class of a template class? Is it any choice
of template arguments, or must the template arguments be the exact same as
well, for the classes to be considered identical?

The answer is that the template arguments must be identical. If they are
not, then the assignment will be handled by the case that assigns from an Expr-
object. Fortunately, this makes things a bit simpler, in that a template class
may be referred inside the class itself, without writing the template arguments,
thus assuming the template arguments are the same as provided during the
construction of the class. An example of this is found in the description of the
ArrayMini-class in section 3.6.3 below.

Assignment From Self

Often when overriding the assignment operator for some class in C++, one
also checks to see if assignment is performed on the object itself (that is, an
assignment such as A = A;), this however, is not really a bug in ArrayOps,
although since side-effects are disallowed, the assignment would be superfluous.
However, if we were to add an if-statement skipping such assignments, then
we would add extra overhead, accounting for a situation that is likely never to
occur, and even if it did, it would not pose any danger at all. For this reason,
such checking has been omitted.

Assignment Macro

To create all the different assignments inside a class, a macro called AOp MakeAssign
is being used. Let us use the ArrayMini-class as an example, and see the output

CHAPTER 3. IMPLEMENTATION 72

of the macro for regular assignment:

// Assignment from exact same class.
inline
ArrayMini& operator= (ArrayMini const& arr)
{

EvalAll<assign<T> >(*this, arr);

return *this;
}

// Assignment from arbitrary Expr-objects.
template <class S1> inline
ArrayMini& operator= (Expr<T, S1> const& expr)
{

EvalAll<assign<T> >(*this, expr);

return *this;
}

// Assignment from value.
inline
ArrayMini& operator= (T const& val)
{

EvalAll<assign<T> >(*this, val);

return *this;
}

Note how the assignment functions are just implemented by applying the EvalAll-
function with an appropriate functor, in this case called assign, which simply
applies operator= on each of the elements in the arrays.

For accumulating assignment operators (such as += or *=), the macro creates
functions similar to the above, but leaves out assignment from the exact same
class, as this does not default to anything for that kind of assignment in C++,
and therefore does not need special attention.

3.6.2 ArrayBase-Class

All arrays must derive from the ArrayBase-class, and must provide a sized array
whose elements can be looked up, as well as having values assigned to them.

Class Layout & Constructors

The ArrayBase-class is of course a template class, taking the usual datatype
T for its elements, the implementor-class S, and finally a boolean template ar-
gument Parallel, deciding whether or not to execute assignments in parallel,

CHAPTER 3. IMPLEMENTATION 73

whenever an instance of the class occurs as a left-hand in an assignment. The
basic class layout is as follows:

template <class T, class S, bool Parallel>
class ArrayBase : public Expr<T, S>
{
public:

ArrayBase (unsigned int parLimit=kParLimit) :
Expr<T, S>(), mParLimit(parLimit) {}

ArrayBase (S const& s,
unsigned int parLimit=kParLimit) :

Expr<T, S>(s), mParLimit(parLimit) {}

// ...
};

Note that the second of these constructors, passes an instance of the implementor-
class S to the super-class Expr, which in turn passes it to its super-class S.

The parallel limit kParLimit is set to 1000 elsewhere, which may change
in future versions of ArrayOps. The rest of the member functions of the
ArrayBase-class, are detailed below.

Parallelism Activation Limits

The ArrayBase-class also provides functions for querying and altering the par-
allelism limits:

// Get/Set the limits for when to use parallelism.
inline int
GetParLimit () const { return mParLimit; }

inline void
SetParLimit (int parLimit) { mParLimit = parLimit; }

And the integer variable mParLimit is declared private inside the ArrayBase-
class.

Checked Lookup Function

The ArrayBase-class provides the non-const version of the checked lookup
function, that throws an exception if the index is out of range. The func-
tion merely uses the operator[] function that is assumed to be provided by
the implementor-class supplied through the template argument S, and is hence
implemented as follows:

// Element lookup, non-const.
T& at(unsigned int i)

CHAPTER 3. IMPLEMENTATION 74

{
if (i >= S::Size())
{

throw std::out_of_range(kErrRange);
}

return (*this)[i];
}

The const-version of this function was declared in the Expr-class (see page 51).

Index Manipulator Creators

The slice, cycle, and reverse index manipulators also reside as members of the
ArrayBase-class, whilst themselves deriving from the ArrayBase-class, thus al-
lowing for assignments and such to be performed on them as well. To implement
this in C++ we must use forward declarations. To make instantiation of these
classes for index manipulation easier, functions have been provided that set the
ArrayBase-object on which to apply the index manipulator, to be the this-
object. The implementation inside the ArrayBase-class is as follows:

// Forward declarations for different
// index-manipulation arrays.
class ArraySlice;
class ArrayCycle;
class ArrayReverse;

// Return an ArraySlice-object.
inline ArraySlice
Slice (unsigned int offset, unsigned int size)
{

return ArraySlice(*this, offset, size);
}

// Return an ArrayCycle-object.
inline ArrayCycle
Cycle (unsigned int offset=0)
{

return ArrayCycle(*this, offset);
}

// Return an ArrayReverse-object.
inline ArrayReverse
Reverse ()
{

return ArrayReverse(*this);
}

CHAPTER 3. IMPLEMENTATION 75

And the actual implementations for the classes ArraySlice and so on, are then
defined elsewhere (see section 3.7 below).

Fail-Safe Functions

The following functions are declared private to ensure that no initialization
assignments take place, and that no unhandled assignments take place, in case
you had forgotten to implement the operator= for an array-class you made:

// Ensure no implicit assignments take place.
ArrayBase (ArrayBase const& arr) { assert(false); }

// Ensure no unhandled assignment takes place.
template <class X>
ArrayBase& operator= (X const& x) { assert(false); }

// Ensure no unhandled assignment takes place.
template <class X>
ArrayBase& operator= (X& x) { assert(false); }

This should not be able to compile at all, so the assert-statements are just there
to show you that we should absolutely not get to that point.

Let us say you have made an array-class called MyArray. The trouble with
having left out the operator= overloading in the MyArray-class, for when the
right-hand argument is a MyArray-object as well, is that C++ then defaults
to copying each of the member-fields in the MyArray instance, as described on
page 71. If this includes, say, pointers to memory that has been allocated, then
it is clearly a bug. So once more, it was chosen that ArrayOps should help you
write proper code and avoid bugs.

3.6.3 ArrayMini-Class

The following sections describe the ArrayMini-class, which implements an array
whose size is fixed and known at compile-time. This means the compiler may be
able to optimize the code better, and the array-type is actually intended to be
used with smaller arrays, whose operations may then be entirely unrolled and
inlined by the compiler.

Implementor

The ArrayMini implementor that contains the actual storage and the inlined
access functions, is as follows:

template <class T, unsigned int kSize>
class ArrayMini_Imp
{
public:

ArrayMini_Imp () {}

CHAPTER 3. IMPLEMENTATION 76

// Element lookup.
inline T& operator[] (unsigned int i)
{

assert(i<kSize);
return mStorage[i];

}

// Element lookup, const.
inline
T const& operator[] (unsigned int i) const
{

assert(i<kSize);
return mStorage[i];

}

// Size of array.
inline unsigned int Size () const { return kSize; }
inline bool IsSized () const { return true; }

protected:
T mStorage[kSize];

};

Instantiator

The ArrayMini-class that you should instantiate, and which basically just im-
plements the assignment operators as well as deriving from the ArrayBase-class
with the ArrayMini Imp-class as its implementor, is given as follows:

template <class T, unsigned int kSize, bool Parallel=false>
class ArrayMini :

public ArrayBase<T, ArrayMini_Imp<T, kSize>, Parallel>
{
public:

ArrayMini () :
ArrayBase<T, ArrayMini_Imp<T, kSize>, Parallel>() {}

// Macro making overloadings for the assignment operators.
AOp_MakeAssign(ArrayMini);

};

Naturally, assignment between two objects of the exact same ArrayMini-
class (that is, two instances of the ArrayMini-class, whose template arguments
are identical), would be handled properly by the default assignment as described
in section 3.6.1, as the only memberfield the class has, is the mStorage array
of elements, which would get copied element-by-element, according to C++

CHAPTER 3. IMPLEMENTATION 77

semantics. However, this would of course ignore whether or not to execute the
assignment in parallel through the use of the EvalAll function, and so, we
must implement assignment from ArrayMini-objects as well, as shown in the
source-code above, by the use of the generic AOp MakeAssign-macro.

3.6.4 ArrayAuto-Class

The following describes the ArrayAuto-class, which implements an array whose
size is automatically adjusted in an assignment, whenever such an object occurs
in the left-hand of an assignment expression, and where the right-hand is of a
different size. This array-class is an example on how to extend on the function-
ality of an existing array-class, by way of ordinary C++ class-inheritance.

Instantiator

The ArrayAuto-class has only an instantiator, deriving from the Array-class,
which is assumed to implement a function called Resize and a function called
ResizeCopy, as described in section 2.3.2 on page 10. The ArrayAuto-class is
implemented as follows:

template <class T, bool Parallel=true>
class ArrayAuto : public Array<T, Parallel>
{
public:

ArrayAuto () : Array<T, Parallel>() {}
ArrayAuto (unsigned int size) : Array<T, Parallel>(size) {}

ArrayAuto (ArrayAuto const& x) : Array<T, Parallel>()
{

*this = x;
}

template <class S1>
ArrayAuto (Expr<T, S1> const& x) : Array<T, Parallel>()
{

*this = x;
}

// Macro making overloadings for the assignment operators.
// This macro is specialized for the ArrayAuto-class.
AOp_MakeAssignAuto(ArrayAuto);

};

Assignment Macro

The assignment overloadings generated by the AOp MakeAssignAuto-macro, are
quite similar to those on page 71 for the AOp MakeAssign-macro, only we now

CHAPTER 3. IMPLEMENTATION 78

have to check if the size of the array must be adjusted. Let us first see how
assignment from the exact same class is implemented:

// Assignment from exact same class.
inline
ArrayAuto& operator= (ArrayAuto const& x)
{

assert(x.IsSized());

if (Size() != x.Size())
{

Resize(x.Size());
}

EvalAll<assign<T> >(*this, x);

return *this;
}

Note how we call the function Resize if the sizes do not match. Recall that the
Resize function does not copy the old elements of the array. An example of an
accumulative assignment operator that uses the ResizeCopy function instead,
is implemented as follows:

// Assignment from arbitrary Expr-objects.
template <class S1> inline
ArrayMini& operator+= (Expr<T, S1> const& x)
{

assert(x.IsSized());

if (Size() != x.Size())
{

ResizeCopy(x.Size());
}

EvalAll<assign_plus<T> >(*this, x);

return *this;
}

Note however, that in case the new array-size is greater than previously, then
the new array-elements are not initialized, so that part of the array will contain
garbage. Also note that resizing of the array is not necessary when the right-
hand is a value, so that kind of operator is implemented as it was for the
AOp MakeAssign macro.

CHAPTER 3. IMPLEMENTATION 79

3.7 Index Manipulators

The index manipulators, that is, the slice, cycle, and reverse arrays, are merely
wrappers that map the index of another array in some fashion. This means
we should merely hold a reference to the array whose index is to be mapped,
and then store the mapping attributes, which will then be used in the lookup
functions of the wrapper class. In the following we will describe the implemen-
tation of the ArraySlice class, which is a good example of this. The other
index manipulation classes are implemented similarly.

3.7.1 Slice

An array-slice is a reference to another array, whose index is offset and whose
size may be smaller than that of the original array.

Implementor

The implementor-class containing storage and the inlined lookup and size func-
tions, is implemented as follows:

template <class T, class S, bool Parallel>
class ArraySlice_Imp
{
public:

ArraySlice_Imp (ArrayBase<T,S,Parallel>& arr,
unsigned int offset,
unsigned int size) : mArray(arr),

kOffset(offset),
kSize(size) {}

// Element lookup.
inline T& operator[] (unsigned int i)
{

assert(i<kSize);

return mArray[i+kOffset];
}

// Element lookup, const.
inline
T const& operator[] (unsigned int i) const
{

assert(i<kSize);

return mArray[i+kOffset];
}

CHAPTER 3. IMPLEMENTATION 80

// Size of array.
inline unsigned int Size () const { return kSize; }
inline bool IsSized () const { return true; }

protected:
ArrayBase<T,S,Parallel>& mArray;
const unsigned int kOffset;
const unsigned int kSize;

};

Note the use of assertions in the lookup functions, where we check that the
index is within proper bounds, even though the referenced ArrayBase object
presumably also does this. This excessive use of assertions, makes debugging
much easier, as the origin of a bug is better pinpointed. It also makes it easier
to read from the source-code, what parameters are considered valid.

Also note the attributes being declared const, which may assist the compiler
in making optimizations of the code.

Instantiator

The ArraySlice-class that is instantiated through the Slice() function in the
ArrayBase-class, is implemented as follows:

template <class T, class S, bool Parallel>
class ArrayBase<T,S,Parallel>::ArraySlice :

public ArrayBase<T, ArraySlice_Imp<T,S,Parallel>, Parallel>
{
public:

// Convenient type-definition of implementor.
typedef ArraySlice_Imp<T, S, Parallel> TImp;

ArraySlice(ArrayBase& arr,
unsigned int offset,
unsigned int size) :

ArrayBase<T, TImp,
Parallel>(TImp(arr, offset, size)) {}

// Macro making overloadings for the assignment operators.
AOp_MakeAssign(ArraySlice);

};

There are no surprises here, as the implementation follows that of any other
array in ArrayOps, such as ArrayMini above, which means that an ArraySlice-
object may also be used as an lvalue in arithmetic expression.

CHAPTER 3. IMPLEMENTATION 81

3.8 Object Destruction

Usually when one has a class-hierarchy in C++, and the sub-classes must have
their destructors called in all situations, regardless of whether we know it to be
a certain sub-class or not, one declares the destructor of the super-class to be
virtual. We could for example have a super-class A as follows:

class A
{
public:

virtual ~A() {}

// ...
};

And a sub-class B could then be:

class B : public A
{
public:

~B() { /* Specialized cleanup */ }

// ...
};

Now, if we were to have some function Foo taking as argument a pointer to
some instance of the class A, and if the function ultimately deletes this instance
of A, as follows:

void Foo(A* a)
{

// ...

delete a;
}

then even though there is no way of knowing if the object a is really an instance
of just the class A, or if it is actually an instance of its sub-class B, the destructor
of B will be called whenever the latter is the case, because the destructor in
class A was declared virtual. If it had not been declared virtual, then the
destructor of class B would not be called.

3.8.1 Code Generation

Unfortunately, the C++ compiler generates some extra code for the construction
of an object, whenever a class has one or more virtual functions. So even though
the destructor is only called once in the lifetime of an object, we would like to
avoid the class having virtual functions altogether, including the destructor.

CHAPTER 3. IMPLEMENTATION 82

Fortunately, the classes in the ArrayOps framework do not need any spe-
cialized cleanup code, except for some of the classes implementing the actual
arrays. So the direct approach would be to simply implement the destructors
in the classes that need specialized cleanup. However, this would mean that we
always had to know exactly which class an object was an instance of, in order
for the destructor to be invoked.

3.8.2 Implementor Class & Cleanup Code

The solution is therefore, to always ensure that the cleanup code is in the socalled
implementor. That is, the cleanup code must be in the class that serves as the
super-class to the Expr-class from section 3.2.4, which then allows us to have a
function like the following:

template <class T, class S>
void Goo(Expr<T, S>* x)
{

// ...

delete x;
}

Which would just call the destructor of the class S, as the class Expr<T, S>
does not have a destructor by itself.

3.8.3 Array-Class

An example of this is found in the Array-class, whose implementor-class has
both a constructor and destructor:

template <class T>
class Array_Imp
{
public:

Array_Imp () : mStorage(0), mSize(0) {}
~Array_Imp () { DoDelete(); }

// ...
};

Where allocation and deletion is actually implemented in the functions named
DoAllocate and DoDelete. Note that the constructor of Array Imp does not
allocate any storage, as this is assumed to be done by the instantiator-class as
we shall see next:

template <class T, bool Parallel=true>
class Array : public ArrayBase<T, Array_Imp<T>, Parallel>
{

CHAPTER 3. IMPLEMENTATION 83

public:
Array () : ArrayBase<T, Array_Imp<T>, Parallel>() { }
Array (unsigned int size) :

ArrayBase<T, Array_Imp<T>, Parallel>()
{

DoAllocate(size);
}

// ...
};

The Array-class is the class that one actually instantiates, and as can be seen,
it derives from the ArrayBase-class, which in turn derives from the Expr-class,
which ultimately derives from the class Array Imp through reverse inheritance.
This entire class-hierarchy should only have a single destructor implemented,
and it should always be in the top-most super-class, here the class Array Imp,
which is also the case.

Bibliography

OpenMP Architecture Review Board. Openmp. URL http://www.openmp.
org/.

MPI committee. Message passing interface (mpi). URL http://www-unix.
mcs.anl.gov/mpi/.

Free Software Foundation. Gnu lesser general public license. URL http://www.
gnu.org/copyleft/lesser.html.

Steve Karmesin, Scott Haney, Bill Humphrey, Julian Cummings, Tim Williams,
Jim Crotinger, Stephen Smith, and Eugene Gavrilov. Parallel object-oriented
methods and applications (pooma). URL http://acts.nersc.gov/pooma/.

Bjarne Stroustrup. The C++ Programming Language, Second Edition. Addison-
Wesley, 1991. ISBN 0-201-53992-6.

Edwin Robert Tisdale. The scalar, vector, matrix and tensor library (svmtl).
URL http://www.netwood.net/~edwin/svmtl/.

Todd Veldhuizen. Blitz++. URL http://www.oonumerics.org/blitz/.

84

http://www.openmp.org/
http://www.openmp.org/
http://www-unix.mcs.anl.gov/mpi/
http://www-unix.mcs.anl.gov/mpi/
http://www.gnu.org/copyleft/lesser.html
http://www.gnu.org/copyleft/lesser.html
http://acts.nersc.gov/pooma/
http://www.netwood.net/~edwin/svmtl/
http://www.oonumerics.org/blitz/

Index

Accumulator class, 30
Allocations

implicit, 4
Array, 10, 82

and vector, 4
elements

access, 13
checked access, 14

fixed-size, 11
from memory, 11
resizable, 10, 12

automatically, 12
ArrayAuto, 12, 77

instantiator, 77
ArrayBase, 10, 72
ArrayMini, 11, 75

implementor, 75
instantiator, 76

ArrayOps
framework, 47
motivation, 1, 3

ArrayUse, 11
Assertions, 36
Assignment, 20, 70

from self, 71
nested, 21
same class, 71
unhandled, 75

Blitz++, 2

Casting, 27, 63
ConstCast(), 27
DynamicCast(), 27
ReinterpretCast(), 27
StaticCast(), 27

Comparison, 20

Constness, 35
Contact, 8
Cycle, 16

Debug-mode, 7
Deferred computation, 20

Exceptions, 36
debug-mode, 36

Expr
class, 49

Expr1
class, 51
implementor, 51
instantiator, 52
usage, 57

Expr2
class, 53
implementor, 53
instantiator, 54
usage, 57

ExprVal
implementor, 55
instantiator, 56

ExprValVar Imp, 55
ExprVar

implementor, 55
instantiator, 56

Framework, 47
class hierarchy, 47
functors, 47

Functions, 23, 60
at(), 14

const, 51
kErrRange, 51
non-const, 73

85

INDEX 86

Eval1(), 25, 60
EvalAll(), 64

usage, 71, 77
functor evaluation, 25

unary, 25
mathematical, 23, 24

abs, 23
acos, 23
asin, 23
atan, 23
atan2, 23
ceil, 23
cos, 23
cosh, 23
exp, 23
fabs, 23
floor, 23
fmod, 23
log, 23
log10, 23
pow, 23
pow2, 24
pow4, 24
pow8, 24
sin, 23
sinh, 23
sqrt, 23
tan, 23
tanh, 23

Mean(), 32, 69
Norm(), 33
parallelism

GetParLimit(), 37
SetParLimit(), 37

power, 24
Product(), 32
ReduceAll(), 28, 66
reductions, 31, 69

Mean(), 32, 69
Norm(), 33
Product(), 32
Sum(), 31
Variance(), 34

size, 25
IsSized(), 25
queries, 50

Resize(), 11
ResizeCopy(), 11
Size(), 25

Sum(), 31
Variance(), 34

Functors, 25, 47

GNU license, 7

Header files, 9
separation of templates, 40

Implementor, 50
and destruction, 82

Index
manipulators, 15, 79

creators, 74
cycle, 16
nested, 18
reverse, 17
slice, 15, 79

range, 10
Inheritance

reverse, 5, 44
initialization, 45

Initialization
implicit, 4
unhandled, 75

Installation, 9
Instantiator, 50

License, 7
manual, 8
source-code, 7

Lookup, 13
checked, 14

Loop
flattened, 5
unrolling, 6

lvalue, 10

Macros, 6, 47
AOp MakeAssign(), 71

usage, 76, 80
AOp MakeAssignAuto(), 77

usage, 77
Mean, 32

INDEX 87

Meta-programming, 5, 42
nested, 43

Motivation, 1

Norm, 33
Notation, 4

Object
destruction, 81
temporary, see Temporaries

OpenMP, 36
and cache, 38

Operators, 19
arithmetic, 19
assignment, 20
bitwise, 20
implementation, 56
logical, 20

Optimizations
compiler, 6

Parallelism, 36
activation limits, 73
ArrayBase support, 37
cache coherency, 38
thread safety, 35

POOMA, 2
Product, 32

Reduce class, 69
Reductions, 31, 69
Release-mode, 7
Resizing, 11

implicit, 34
Reverse, 17
Reverse inheritance, 5, 44

initialization, 45

Semantics, 4, 34
resizing, 34
side-effects, 35
strong typed, 21, 27, 35

Shared memory processor, 38
Side-effects, 4, 35, 38, 48
SIMD, 6
Size

checking, 4

matching, 35
queries, 50

Slice, 15, 79
implementor, 79
instantiator, 80

SMP, 38
Storage, 47

abstraction, 48
of a copy, 49
of a reference, 48

Sum, 31
SVMTL, 2

Templates, 39
same class?, 71

Temporaries, 41
lifetime of, 42

Terminology, 4
Testing, 7
Types

strong-typed, 4, 35

valarray, 1
Values, 55
Variables, 55
Variance, 34
Vector

and array, 4
Virtual

destructor, 81
functions, 81

Webpage, 8

	Contents
	Preface
	Introduction
	Overview
	Motivation
	Modern Implementations
	Existing Libraries

	The ArrayOps Library
	Terminology & Notation
	Principles
	Flattened Loops
	Template Meta-Programming
	Reverse Inheritance
	Macros
	Optimizations
	Testing

	License
	Source-Code License
	Manual License

	Contact

	Reference Manual
	Introduction
	Installation
	Including Just Header-Files

	Array Types
	ArrayBase
	Array
	ArrayMini
	ArrayUse
	ArrayAuto
	Accessing Array Elements
	Checked Access

	Index Manipulators
	Slice
	Cycle
	Reverse
	Nesting

	Operators
	Arithmetic Operators
	Bitwise Operators
	Logical Operators
	Assignment Operators

	Functions
	Mathematical Functions
	Power Functions
	Size
	Eval
	Casting
	ReduceAll

	Reductions
	Sum
	Product
	Mean
	Norm
	Variance

	Semantics
	Implicit Resizing
	Strong-Typed
	Size-Matching
	Constness
	Assertions
	Exceptions

	Parallelism
	ArrayBase Support
	Cache Coherency

	Implementation
	Techniques
	Template Classes
	Temporary Objects
	Meta-Programming
	Nested Meta-Programming
	Reverse Inheritance
	Macros

	Framework
	Class Hierarchy
	Functors
	Storage-Class
	Expr-Class
	Expr1-Class
	Expr2-Class
	Values & Variables

	Operators
	Unary Operator
	Binary Operator

	Functions
	Eval1
	Casting
	EvalAll
	ReduceAll

	Reductions
	Reduce-Class

	Arrays
	Assignment
	ArrayBase-Class
	ArrayMini-Class
	ArrayAuto-Class

	Index Manipulators
	Slice

	Object Destruction
	Code Generation
	Implementor Class & Cleanup Code
	Array-Class

	Bibliography
	Index

