

SwarmOps for Java
Numeric & Heuristic Optimization

Source-Code Library for Java

The Manual
Revision 1.0

By

Magnus Erik Hvass Pedersen

June 2011

Copyright © 2009-2011, all rights reserved by the author.

Please see page 4 for license details.

SwarmOps for Java

2

Contents

Contents ... 2

1. Introduction ... 3

1.1 Installation .. 3

1.2 Tutorials ... 4

1.3 Updates... 4

1.4 License ... 4

2. What Is Optimization? .. 5

2.1 Constraints ... 6

2.2 Meta-Optimization ... 9

3. Optimization Methods .. 14

3.1 Choosing an Optimizer .. 14

3.2 Gradient Descent (GD) .. 14

3.3 Pattern Search (PS) .. 15

3.4 Local Unimodal Sampling (LUS) .. 16

3.5 Differential Evolution (DE) ... 17

3.6 Particle Swarm Optimization (PSO) .. 18

3.7 Many Optimizing Liaisons (MOL) .. 18

3.8 Mesh (MESH) .. 19

Bibliography .. 20

SwarmOps for Java

3

1. Introduction

SwarmOps is a source-code library for doing numerical optimization in Java. It fea-

tures popular optimizers which do not use the gradient of the problem being opti-

mized. SwarmOps also makes it easy to discover the behavioural or control parame-

ters making an optimizer perform well. This is done by using another overlaid opti-

mizer and is known here as Meta-Optimization but is also known in the literature as

Meta-Evolution, Super-Optimization, Parameter Calibration, Parameter Tuning, etc.

The success of SwarmOps in doing meta-optimization is mainly due to three things:

1. SwarmOps uses the same interface for an optimization problem and an opti-

mization method, meaning that an optimization method is also considered an

optimization problem. This modular approach allows for meta-optimization,

meta-meta-optimization, and so on.

2. SwarmOps uses a simple time-saving technique called Pre-Emptive Fitness

Evaluation which makes meta-optimization more tractable to execute.

3. SwarmOps features a simple optimization method that works well as the

overlaid meta-optimizer because it is usually able to find good behavioural

parameters for an optimizer using a small number of iterations, again making

meta-optimization more tractable to execute.

1.1 Installation

To use the SwarmOps JAR-library in Eclipse:

1. Unpack the SwarmOps archive to a convenient directory.

2. Open the workspace in which you will use SwarmOps.

3. Add the SwarmOps JAR-file to the build-path of the projects that must use it.

SwarmOps for Java

4

4. Import swarmops.optimizers.* and other classes you will need in your

source-files.

To use the SwarmOps test-projects in Eclipse:

1. Unpack the SwarmOps archive to a convenient directory.

2. Create a new Eclipse workspace in that directory.

3. Select the menu: File / Import / Existing projects, and import the SwarmOps

projects.

1.2 Tutorials

Several examples on how to use SwarmOps are supplied with the source-code and

are well documented. Tutorials have therefore been omitted in this manual.

1.3 Updates

Updates to SwarmOps can be found on the internet: www.hvass-labs.org

1.4 License

This manual may be downloaded, printed, and used for any personal purpose, be it

commercial or non-commercial, provided the author(s) are not held responsible for

your actions, or any damage caused by your use of the manual. If you want to dis-

tribute the manual commercially, for example in a printed book, or on a web-page

that requires payment, then you must obtain a license from the author(s).

http://www.hvass-labs.org/

SwarmOps for Java

5

2. What Is Optimization?

Solutions to some problems are not merely deemed correct or incorrect but are rated

in terms of quality. Such problems are known as optimization problems because the

goal is to find the candidate solution with the best, that is, optimal quality.

Fitness Function

SwarmOps works for real-valued and single-objective optimization problems, that

is, optimization problems that map candidate solutions from -dimensional real-

valued spaces to one-dimensional real-valued spaces. Mathematically speaking we

consider optimization problems to be functions of the following form:

In SwarmOps it is assumed that is a minimization problem, meaning that we are

searching for the candidate solution with the smallest value . Mathe-

matically this may be written as:

Typically, however, it is not possible to locate the exact optimum and we must be

satisfied with a candidate solution of sufficiently good quality but perhaps not quite

optimal. In this manual we refer to the optimization problem as the fitness func-

tion but it is also known in the literature as the cost function, objective function, er-

ror function, quality measure, etc. We may refer to candidate solutions as positions,

agents or particles, and to all possible candidate solutions as the search-space.

Maximization

SwarmOps can also be used with maximization problems. If is a maxi-

mization problem then the equivalent minimization problem is:

SwarmOps for Java

6

Gradient-Based Optimization

The classic way of optimizing a fitness function is to first deduce its gradient

 consisting of the partial differentials of , that is:

Then the gradient is followed iteratively in the direction of steepest descent, or a

quasi-Newton optimizer can be used. This requires not only for the fitness function

 to be differentiable, but the gradient can also be very laborious to derive and the

execution can be very time-consuming.

Heuristic Optimization

An alternative to gradient-based optimization methods is to let the optimization be

guided solely by the fitness values. This kind of optimization has no explicit knowl-

edge of how the fitness landscape looks but merely considers the fitness function to

be a black box that takes candidate solutions as input and produces some fitness

value as output. This is known in the literature as Derivate Free Optimization, Direct

Search, Heuristic Optimization, Meta-Heuristics, Black-Box Optimization etc.

2.1 Constraints

Constraints split the search-space into regions of feasible and infeasible candidate

solutions. For instance, an engineering problem could have a mathematical model

that should be optimized but actually producing the solution in the real world puts

some constraints on what is feasible. There are different ways of supporting and

handling constraints in heuristic optimization.

http://en.wikipedia.org/wiki/Gradient_descent
http://en.wikipedia.org/wiki/Quasi-Newton_method

SwarmOps for Java

7

Boundaries

A simple form of constraints is search-space boundaries. Instead of letting map

from the entire -dimensional real-valued space, it is often practical to use only a

part of this vast search-space. The lower and upper boundaries that constitute the

search-space are denoted as and so the fitness function is of the form:

Such boundaries are typically enforced in the optimization methods by moving can-

didate solutions back to the boundary value if they have exceeded the boundaries.

This is the default type of constraints in SwarmOps.

Penalty Functions

More complicated constraints are supported transparently by any heuristic optimizer

by penalizing infeasible candidate solutions, that is, by adding a penalty function to

the fitness function. Examples can be found in the Penalized benchmark problems.

SwarmOps for Java

8

General Constraints

SwarmOps supports general constraints by taking feasibility (constraint satisfaction)

into account when comparing candidate solutions. Normally we determine whether

candidate solution is better than by comparing their fitness: , but it

is also possible to take feasibility into account. Feasibility is a Boolean; either a can-

didate solution is feasible or it is infeasible, so the comparison operator is:

(is better than)

(is infeasible and is feasible) or

(is infeasible and is infeasible and or

(is feasible and is feasible and)

Note that the actual implementation of this comparison is simplified somewhat.

Also, when is feasible and is infeasible then their fitness need not be computed

because is worse than due to their mutual feasibility. This is used in the imple-

mentation to avoid fitness computations whenever possible.

Phases of Constrained Optimization

Using the above comparison operator means that optimization has two phases. First

the optimizer will likely only find infeasible candidate solutions, so it optimizes the

fitness of infeasible solutions. Then at some point the optimizer hopefully discovers

a feasible candidate solution and regardless of its fitness it will then become the

best-found solution of the optimizer and form the basis of the further search, so now

the fitness of feasible solutions is being optimized.

SwarmOps for Java

9

Difficulty of Constrained Optimization

While SwarmOps gives you the ability to implement any constraint imaginable, they

will make it increasingly difficult for the optimizer to find feasibly optimal solu-

tions, because constraints narrow the feasible regions of the search-space. You

should therefore also narrow the initialization and search-space boundaries to be as

close to the feasible region as possible.

Implementation

There are two methods in the Problem-class where you can implement constraints:

 EnforceConstraints() allows you to make repairs to a candidate solution be-

fore its feasibility and fitness is evaluated. For example, when search-space

boundaries are used as constraints then the repairing would consist of moving

candidate solutions back between boundaries if they were overstepped. This

is done by default.

 Feasible() evaluates and returns the feasibility of a candidate solution without

altering it.

The TestCustomProblem tutorial program gives an example of their usage.

2.2 Meta-Optimization

Optimization methods usually have a number of user-defined parameters that govern

the behaviour and efficacy of the optimization method. These are called the opti-

mizer’s behavioural or control parameters. Finding a good choice of these behav-

ioural parameters has previously been done manually by hand-tuning and sometimes

using coarse mathematical analysis. It has also become a common belief amongst

researchers that the behavioural parameters can be adapted during optimization so as

SwarmOps for Java

10

to improve overall optimization performance, however, this has been demonstrated

to be unlikely in general, see (1) (2) (3). Tuning behavioural parameters can be con-

sidered an optimization problem in its own right and hence solved by an overlaid

optimization method. This is known here as Meta-Optimization but is also known in

the literature as Meta-Evolution, Super-Optimization, Parameter Calibration, etc.

The success of SwarmOps in doing meta-optimization stems mainly from three

things, first that SwarmOps features an optimization method that is particularly suit-

able as the overlaid meta-optimizer because it quickly discovers well performing

behavioural parameters (this is the LUS method described in section 3.4 below), and

second because SwarmOps employs a simple technique for reducing computational

time called Pre-Emptive Fitness Evaluation, and third because SwarmOps uses the

same function-interface for both optimization problems and optimization methods.

A number of scientific publications use SwarmOps for meta-optimization and have

more elaborate descriptions than those given here, as well as having literature sur-

veys and experimental results, please see (1) (2) (3) (4). The concept of meta-

optimization can be illustrated schematically:

Meta-Optimizer (e.g. LUS)

Optimizer (e.g. DE)

Problem 1

Problem 2

+

SwarmOps for Java

11

Here the optimizer whose behavioural parameters are to be tuned is taken to be the

DE method (described later in section 3.5). The SwarmOps framework allows for

parameters to be tuned with regard to multiple optimization problems, which is

sometimes necessary to make the performance of the behavioural parameters gener-

alize better to problems other than those the parameters were specifically tuned for.

In this example the DE parameters are tuned for two problems.

Fitness Normalization

Fitness functions must be non-negative to work properly with meta-optimization in

SwarmOps. This is because Pre-Emptive Fitness Evaluation works by summing fit-

ness values for several optimization runs and aborting this summation when the fit-

ness sum becomes worse than that needed for the new candidate solution to be ac-

cepted as an improvement. This means the fitness values must be non-negative so

the fitness sum is only able to grow worse and the evaluation can thus be aborted

safely. SwarmOps for Java does this normalization automatically, provided you ac-

curately implement the MinFitness field of the Problem-class. For example, you

may have some fitness function which maps to, say , and you would then

have to set MinFitness to . It is best to make MinFitness accurate so that

 for the optimum , that is, MinFitness should be the fitness of the

optimum. You should be able to estimate a lower fitness boundary for most real-

world problems, and if you are unsure what the theoretical boundary value is, you

may choose some boundary fitness value of ample but not extreme magnitude.

SwarmOps for Java

12

Fitness Weights for Multiple Problems

If you are using multiple problems in meta-optimization, you may need to experi-

ment with weights on each problem so as to make their influence on the meta-

optimization process more equal.

Advice

The LUS method is generally recommended as the overlaid meta-optimizer. The

tutorial source-code contains suggestions for experimental settings which have been

found to work well. It is best if you can perform meta-optimization with regard to

the problems you are ultimately going to use the optimization method for. However,

if your fitness function is very expensive to evaluate then you may try and resort to

using benchmark problems as a temporary replacement when meta-optimizing the

behavioural parameters of your optimizer, provided you use multiple benchmark

problems and the optimization settings are similar to the settings that are to be used

for the real problem. This means you should use benchmark problems of similar di-

mensionality and with a similar number of optimization iterations as you would use

for the actual problem you are ultimately going to optimize.

Constraints and Meta-Optimization

Two issues regarding constraints in meta-optimization should be mentioned:

1. Constraints can be made on an optimizer’s control parameters in the same

manner as for an optimization problem by implementing the EnforceCon-

straints() and Feasible() methods in the optimizer’s class. This means the

meta-optimizer will search for control parameters that are feasibly optimal,

allowing you to search for control parameters that meet certain criteria, e.g.

have certain relationships to each other such as one parameter being smaller

SwarmOps for Java

13

than another or the parameters having different signs, etc. See the source-

code of the MOL optimizer for an example of this.

2. Constraint satisfaction is ignored when determining how well an optimizer

performs in making up the meta-fitness measure. This is an open research

topic but experiments suggest that an optimizer’s control parameters should

be meta-optimized for unconstrained problems and this will yield good per-

formance on constrained problems as well.

Meta-Meta-Optimization

In using meta-optimization to find the best performing parameters of some opti-

mizer, one may naturally ask the question: What are then the best performing pa-

rameters for the meta-optimizer itself? It makes good sense to find the best meta-

optimizer if one is going to use it often and the best parameters for the meta-

optimizer can be found by employing yet another layer of optimization, which may

be termed Meta-Meta-Optimization. This is supported in SwarmOps but a tutorial

program is currently not included.

SwarmOps for Java

14

3. Optimization Methods

This chapter gives brief descriptions of the optimization methods that are supplied

with SwarmOps and recommendations for their use.

3.1 Choosing an Optimizer

When faced with a new optimization problem the first optimizer you may want to

try is the PS method from section 3.2 which is often sufficient and has the advantage

of converging (or stagnating) very quickly. PS also does not have any behavioural

parameters that need tuning so it either works or doesn’t. If the PS method fails at

optimizing your problem you may want to try the LUS method from section 3.4

which sometimes works a little better than PS (and sometimes a little worse). You

may need to run PS and LUS several times as they may converge to sub-optimal

solutions. If PS and LUS both fail you will want to try the DE, MOL or PSO meth-

ods and experiment with their behavioural parameters.

As a rule of thumb PS and LUS stagnate rather quickly, say, after iterations,

where is the dimensionality of the search-space, while DE, MOL and PSO require

substantially more iterations, say, or and sometimes even more.

If these optimizers fail, you either need to tune their behavioural parameters using

meta-optimization or use another optimizer altogether, e.g. CMA-ES.

3.2 Gradient Descent (GD)

A classic way of minimizing some fitness function is to repeatedly fol-

low the gradient in the direction of steepest descent. The gradient function

 is defined as the vector of the partial differentials of , that is:

http://www.lri.fr/~hansen/cmaes_inmatlab.html

SwarmOps for Java

15

How it Works

The position is first chosen randomly from the search-space and then updated it-

eratively according to the following formula, regardless of fitness improvement:

With being the step-size. When is a minimization problem the descent di-

rection is followed, that is, we subtract the gradient from the current position instead

of adding it as we would have done for ascending a maximization problem.

Advice

The GD method has some drawbacks, namely that it requires the gradient to be

defined, that the gradient may be expensive to compute, and that GD may approach

the optimum too slowly. So you may wish to try the PS method first. Other variants

of GD exist for improving performance and time usage, e.g. Conjugate GD and

quasi-Newton methods, but they have not been implemented in SwarmOps.

3.3 Pattern Search (PS)

The optimization method known here as Pattern Search (PS) is originally due to

Fermi and Metropolis as described in (5) and a similar method is due to Hooke and

Jeeves (6). The implementation presented here is the variant from (3).

http://en.wikipedia.org/wiki/Conjugate_gradient_method
http://en.wikipedia.org/wiki/Quasi-Newton_method

SwarmOps for Java

16

How it Works

PS uses one agent / position in the search-space which is being moved around. Let

the position be denoted which is initially picked at random from the entire

search-space. The initial sampling range is the entire search-space: .

The potential new position is denoted and is sampled as follows. First pick an in-

dex at random and let and for all . If

improves on the fitness of then move to . Otherwise halve and reverse the sam-

pling range for the ’th dimension: . Repeat this a number of times.

3.4 Local Unimodal Sampling (LUS)

The LUS optimization method performs local sampling by moving a single agent

around in the search-space with a simple way of decreasing the sampling range dur-

ing optimization. The LUS method was presented in (3) (7).

How it Works

The agent’s current position is denoted and is initially picked at random

from the entire search-space. The potential new position is denoted and is sampled

from the neighbourhood of by letting , where is a random

vector picked uniformly from the range , which is initially ,

that is, the full range of the entire search-space defined by its upper boundaries

and its lower boundaries . LUS moves from position to position in case of

improvement to the fitness. Upon each failure for to improve on the fitness of ,

the sampling range is decreased by multiplication with a factor :

SwarmOps for Java

17

where the decrease factor is defined as:

where is the dimensionality of the search-space and is a user-defined parameter

used to adjust the rate of sampling-range decrease. A value of has been found

to work well for many optimization problems.

3.5 Differential Evolution (DE)

The multi-agent optimization method known as Differential Evolution (DE) is origi-

nally due to Storn and Price (8). Many DE variants exist and a simple one is imple-

mented in the DE-class and a number of different DE variants are available through

the DESuite class.

How it Works

DE uses a population of agents. Let denote the position of an agent being updated

and which has been picked at random from the entire population. Let

 be its new potential position computed as follows (this is the so-called

DE/rand/1/bin variant):

where the vectors , and are the positions of distinct and randomly picked agents

from the population. The index is randomly picked and is

also picked randomly for each dimension . A move is made to the new position if

it improves on the fitness of . The user-defined parameters consist of the differen-

tial weight , the crossover probability , and the population-size .

SwarmOps for Java

18

3.6 Particle Swarm Optimization (PSO)

The optimization method known as Particle Swarm Optimization (PSO) is originally

due to Kennedy, Eberhart, and Shi (9) (10). It works by having a swarm of candidate

solutions called particles, each having a velocity that is updated recurrently and

added to the particle’s current position to move it to a new position.

How it Works

Let denote the current position of a particle from the swarm. Then the particle’s

velocity is updated as follows:

where the user-defined parameter is called the inertia weight and the user-defined

parameters and are weights on the attraction towards the particle’s own best

known position and the swarm’s best known position . These are also weighted

by the random numbers . In addition to this, the user also determines

the swarm-size . In the SwarmOps implementation the velocity is bounded to the

full range of the search-space so an agent cannot move farther than from one search-

space boundary to the other in a single move.

Once the agent’s velocity has been computed it is added to the agent’s position:

3.7 Many Optimizing Liaisons (MOL)

A simplification of PSO is called Many Optimizing Liaisons (MOL) and was origi-

nally suggested by Kennedy (11) who called it the “Social Only” PSO. The name

MOL is used in (4) where more thorough studies were made. MOL differs from

SwarmOps for Java

19

PSO in that it eliminates the particle’s best known position . This has been found to

improve performance somewhat on some problems and also makes it easier to tune

the behavioural parameters.

3.8 Mesh (MESH)

The fitness can be computed at regular intervals of the search-space using the

MESH method. For increasing search-space dimensionality this incurs an exponen-

tially increasing number of mesh-points in order to retain a similar interval-size.

This phenomenon is what is known as the Curse of Dimensionality. The MESH

method is used as any other optimization method in SwarmOps and will indeed re-

turn as its solution the mesh-point found to have the best fitness. The quality of this

solution will depend on how coarse or fine the mesh is. The MESH method is

mostly used to make plots of the fitness landscape for simpler optimization prob-

lems, or to study how different choices of behavioural parameters influence an op-

timization method’s performance, that is, how does the meta-fitness landscape look.

The MESH method is not intended to be used as an optimizer.

SwarmOps for Java

20

Bibliography

1. Pedersen, M.E.H. and Chipperfield, A.J. Parameter tuning versus adaptation:

Proof of principle study on differential evolution. s.l. : Hvass Laboratories, 2008.

HL0802.

2. —. Tuning Differential Evolution for Artificial Neural Networks. s.l. : Hvass

Laboratories, 2008. HL0803.

3. Pedersen, M.E.H. Tuning & Simplifying Heuristical Optimization (PhD Thesis).

s.l. : School of Engineering Sciences, University of Southampton, United Kingdom,

2010.

4. Simplifying Particle Swarm Optimization. Pedersen, M.E.H. and Chipperfield,

A.J. s.l. : Applied Soft Computing, 2010, Vol. 10, pp. 618-628.

5. Variable metric method for minimization. Davidon, W.C. 1, s.l. : SIAM Journal

on Optimization, 1991, Vol. 1, pp. 1-17.

6. "Direct Search" solution for numerical and statistical problems. Hooke, R. and

Jeeves, T.A. 2, s.l. : Journal of the Association for Computing Machinery (ACM),

1961, Vol. 8, pp. 212-229.

7. Pedersen, M.E.H. and Chipperfield, A.J. Local Unimodal Sampling. s.l. :

Hvass Laboratories, 2008. HL0801.

8. Differential evolution - a simple and efficient heuristic for global optimization

over continuous space. Storn, R. and Price, K. s.l. : Journal of Global

Optimization, 1997, Vol. 11, pp. 341-359.

9. Particle Swarm Optimization. Kennedy, J. and Eberhart, R. Perth, Australia :

IEEE Internation Conference on Neural Networks, 1995.

SwarmOps for Java

21

10. A Modified Particle Swarm Optimizer. Shi, Y. and Eberhart, R. Anchorage,

AK, USA : IEEE International Conference on Evolutionary Computation, 1998.

11. The particle swarm: social adaptation of knowledge. Kennedy, J. Indianapolis,

USA : Proceedings of the IEEE International Conference on Evolutionary

Computation, 1997.

